plll  1.0
Bibliography
[1]

M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract). In Proceedings of the thirtieth annual ACM symposium on Theory of computing, STOC '98, pages 10–19, New York, NY, USA, 1998. ACM.

[2]

J. Buchmann and C. Ludwig. Practical lattice basis sampling reduction. In Algorithmic number theory, volume 4076 of Lecture Notes in Comput. Sci., pages 222–237. Springer, Berlin, 2006.

[3]

F. Fontein, M. Schneider, and U. Wagner. A polynomial time version of LLL with deep insertions. In Preproceedings of the International Workshop on Coding and Cryptography, WCC 2013, 2013.

[4]

F. Fontein, M. Schneider, and U. Wagner. PotLLL: A polynomial time version of LLL with deep insertions. Designs, Codes and Cryptography, 2014.

[5]

N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. In STOC'08, pages 207–216. ACM, New York, 2008.

[6]

N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology—EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, 2008.

[7]

N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In Advances in cryptology—EUROCRYPT 2010, volume 6110 of Lecture Notes in Comput. Sci., pages 257–278. Springer, Berlin, 2010.

[8]

G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical systems. In CRYPTO, pages 447–464, 2011.

[9]

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982.

[10]

D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In Moses Charikar, editor, ACM-SIAM Symposium on Discrete Algorithms, SODA textquoteright 10, pages 1468–1480, Austin, TX, January 2010. Society for Industrial and Applied Mathematics.

[11]

D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations [extended abstract]. In STOC'10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, pages 351–358. ACM, New York, 2010.

[12]

P. Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Advances in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS, pages 215–233. Springer, 2005.

[13]

P. Q. Nguyen and B. Vallée. The LLL Algorithm: Survey and Applications. Information Security and Cryptography. Springer Berlin Heidelberg, 2010.

[14]

X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n. Preprint available at http://eprint.iacr.org/2009/605.pdf, 2009.

[15]

C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming, 66(2, Ser. A):181–199, 1994.

[16]

C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci., 53(2-3):201–224, 1987.

[17]

C.-P. Schnorr. Blockwise lattice basis reduction revisited. Preprint available at http://www.math.uni-frankfurt.de/ dmst/research/papers.html, 2006.

[18]

C.-P. Schnorr. Accelerated and improved slide- and LLL-reduction. Preprint available at http://www.math.uni-frankfurt.de/ dmst/research/papers.html, 2011.

[19]

C.-P. Schnorr. Factoring integers by CVP algorithms. In Number Theory and Cryptography, volume 8260 of Lecture Notes in Comput. Sci., pages 73–93. Springer, Berlin, 2013.

[20]

A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal forms of integer matrices. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC'96), pages 259–266. ACM Press, 1996.