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Chapter 1

Basics

1.1 Introduction

The idea to examine elliptic curves over (finite) rings came up between Prof. Dr. Jo-

achim Rosenthal and Dr. Elisa Gorla during the 8th Workshop on Elliptic Curve

Cryptography, which was held from September 20th to 22nd 2004 at the Ruhr-

Universität Bochum, Germany.

In public key cryptography one often uses the discrete logarithm problem in

a finite group as the underlying (mathematical) problem to create ciphers. The

discrete logarithm problem for a group G can be formulated as follows: given two

group elements a, b ∈ G, find an integer x ∈ Z such that ax = b. Two kinds of

groups are often used in practice: the multiplicative group of the integers modulo

a huge composite number and the group of points of an elliptic curve over a finite

field.

It turns out that the full structure of a group is not needed to perform public key

cryptography: it is sufficient to have the structure of a semigroup or even only the

structure of special kinds of loops. This is useful since most (mathematical) attacks

on cryptosystems exploit the structure of the mathematical objects, like Zn or the

elliptic curve over a field. If objects are considered which are less structured, some

kinds of attacks are not possible anymore or have to be modified at least.

The question which initiated this thesis can be formulated like this: if one drops

the hypothesis that the underlying object of an elliptic curve is a field, and assumes

that one only has the structure of a ring, what happens to the elliptic curve? Does

their set of points still form a group? Do the addition formulae valid for elliptic

curves over fields still work? What can one say about the structure of the group of

points? And are there new attacks or reduction possibilities which have not been

possible for elliptic curves over fields?

This thesis tries to answer these questions. We mainly concentrate on the case of

commutative rings which have a unit, but also briefly consider the non-commutative

case.

Before we continue we want to mention the preconditions for understanding

this thesis. We assume the reader has an extensive knowledge of Linear Algebra

and basic Algebra and of some basic definitions and results from Topology and

Geometry. Although this thesis contains definitions of everything exceeding these

essentialities, for better understanding it is recommended that the reader is familiar

with Algebraic Geometry and in particular with the Theory of Schemes.
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Chapter 1. Basics

1.2 Outline of the Thesis

In this chapter we will present an overview of the results of this thesis, give some

basic notations and short introductions to category theory and complexity theory.

Chapters 2 and 3 present a lot of material from Commutative Algebra and Al-

gebraic Geometry that may not be known to everyone. In Chapter 2 many tools

from Commutative Algebra, general Algebra and from Sheaf Theory are presented

which are used later. Two important sections are: Section 2.4, where a requirement

for doing arithmetic on elliptic curves over rings is discussed and characterized; and

Section 2.5, where examples for constructing finite rings are given and which con-

tains a discussion on how the required operations for doing arithmetic on elliptic

curves over these rings can be effectively computed.

In Chapter 3 the basics of Algebraic Geometry over rings and fields are intro-

duced, including some Theory of Schemes, curves and group schemes. Of special

interest might be Sections 3.6, 3.8 and 3.9, which deal with how the affine and pro-

jective planes from the Theory of Schemes correspond to the definitions given in

Section 3.1, which deal with curves over rings, and with group and Abelian schemes,

respectively.

Chapter 4 deals with elliptic curves, first generally over schemes, then over fields

and finally over rings. The main interest focuses on the group law, both its abstract

definition using divisors and its geometric definition using Bézout’s Theorem over

algebraically closed fields. The structure of the group of points is analyzed and

algorithms for determining the group order are given.

In the part about elliptic curves over rings an approach using the set of points

is made first. The functoriality of this set is explicitly shown and used to extract

information about the group structure. Then an arithmetic version of the group law

is introduced, which allows the explicit computation of the sum of two points, and

a geometric interpretation of elliptic curves over Artinian rings is given. Finally, an

example is presented and analyzed.

Finally in Chapter 4, elliptic curves over non-commutative rings are discussed.

In Chapter 5 we will present applications for elliptic curves over rings. The

chapter is divided into two parts: factoring and cryptography. In the section about

factoring we will present Lenstra’s Elliptic Curve Factorization Method for Inte-

gers and a generalization of this to arbitrary finite rings. The main results are

the runtime analysis of this generalization, and the application of this algorithm

to compute a primary decomposition of a zero-dimensional ideal in a polynomial

ring Fq[x1, . . . , xn] over the Galois field Fq with q elements.

The second part of Chapter 5 first gives some general information on cryptog-

raphy and how elliptic curves are used in cryptography. Then the hardness of two

problems for elliptic curves over rings is discussed, and several existing encryption

schemes using elliptic curves over rings are presented.

1.3 Results

In this section we want to give an overview of the main results developed in this

thesis. The only new results are the application of elliptic curves over rings to

factoring arbitrary finite rings, which is described and discussed in Section 5.1.4,

2



1.3. Results

and the discussion of elliptic curves over non-commutative rings in Section 4.4.

Let R be a ring. An elliptic curve over R is an equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, ai ∈ R,

satisfying that ∆(a1, a2, a3, a4, a6) ∈ R∗, where ∆ ∈ Z[a1, a2, a3, a4, a6] is an expres-

sion introduced and explained in Chapter 4, together with the set of points P =

(x : y : z) in the projective plane P2(R) satisfying this equation. The projective

plane P2(R) is defined as the set of triples (x, y, z) ∈ R3 such that 〈x, y, z〉 = R, and

two such triples are identified if one results from the other after multiplication by

an element of R; the equivalence class of the triple (x, y, z) is denoted by (x : y : z).

The elliptic curve is denoted by Ea with a = (a1, . . . , a4, a6), and the set of points by

Ea(R). If S is an R-algebra, one can consider the set of points (x : y : z) ∈ P2(S),

which satisfy the equation. They are denoted by Ea(S).

The first result is that the mapping S 7→ Ea(S) is clearly functorial, where this

functor of points respects products: we have Ea(S × S′) = Ea(S) × Ea(S
′) via the

natural maps (Proposition 4.3.10). Moreover, if S is a local Artinian R-algebra with

maximal ideal m, then the map Ea(S) → Ea(S/m) is surjective and every preimage

consists of exactly |m| elements (Lemma 4.3.11). Therefore, if R =
∏k
i=1Ri is the

product of local Artinian rings, and mi are the maximal ideals of Ri, we get the

formula

|Ea(R)| =
n∏

i=1

|mi| · |Ea(Ri/mi)|

in Corollary 4.3.12. Note that every Artinian ring can be uniquely written as such

a product.

A more important result is that the set of points Ea(S) can be turned into a

group under the assumption that S satisfies a modest condition (see Sections 2.4 and

3.6), where the group structure is again functorial in S. While the group structure

can be described very abstractly, as in Abel’s Theorem 4.1.6, it can also be effectively

computed using the formulae in Section 4.2.3 and the algorithm in Section 2.4 by

the method described in Section 4.3.3. The proof that these two group laws are

the same is of special interest: it reduces the case of any ring to the case of an

algebraically closed field, where the group laws can be easily shown to be equivalent

by the use of Bézout’s Theorem.

There is another way to prove the result that Ea(S) is functorially a group

under this operation, for which the same properties hold except that one cannot

know for sure that this group law is the same as the abstract one from Abel’s

Theorem. The idea for this proof originated from H. W. Lenstra and is described in

[Len86]: the group laws can be checked by checking a set of identities in a quotient of

the polynomial ring Z[a1, . . . , a4, a6, x1, y1, z1, x2, y2, z2, x3, y3, z3] using a computer

algebra system. This idea is carried out in Proposition 4.2.19 and Corollary 4.3.17.

Besides the fact that one cannot know whether this group law coincides with the

algebraic one, this method has two more disadvantages: first, the proof is not very

enlightening and, second, it is computationally very complex and takes a long time

to verify, even with a fast computer.

By using the functoriality described above, one can partially describe the group

structure for a curve over an Artinian ring by reducing it to the group structure of

the residue fields R/m for maximal ideals m of R. The group structure for elliptic

3



Chapter 1. Basics

curves over finite fields is quite well-known (see, for example, Corollary 4.2.41 for

the general form, Hasse’s Theorem 4.2.43 for a boundary for the group cardinality,

Theorem 4.2.46 for which exact cardinalities can appear, and [Sch87] and [Vol88] for

the exact group structures that can appear). Only the structure of Ea(R) for local

Artinian rings R with maximal ideal m is not known exactly, as only the structure

of Ea(R/m) and the size of the kernel of the reduction map are known.

These results imply that problems concerning the group of elliptic curves over

an Artinian ring can be split into smaller problems as soon as the Artinian ring

can be effectively decomposed. Therefore, doing cryptography with elliptic curves

over rings is only useful if decomposing the ring is hard (see the discussion in Sec-

tion 5.2.3). Unfortunately this seems not to be the case, as for example we present a

ring factorization algorithm based on Lenstra’s Elliptic Curve Factorization Method

for Integers in Section 5.1.4, which is conjectured to have a similar runtime estimate

as Lenstra’s method. The conjectures involved concern the distribution of integers

with small prime factors, and they seem to be reasonable; one of them (Conjec-

ture 5.1.9) was conjectured by H. W. Lenstra, the other (Conjecture 5.1.7) from the

author of this thesis.

The last thing to mention is the discussion about elliptic curves over non-

commutative rings. The first problem is how to define elliptic curves and, before

that, how to define the projective plane over non-commutative rings; we stick to a

näıve definition, which turns out to be of no use if one wants to use the classical

formulae for adding points. The conclusion of Section 4.4 is that one probably needs

to take another approach, which requires a good knowledge about non-commutative

algebraic geometry that the author does not have.

1.4 Notations

We will use A ⊆ B to denote that A is a subset of B or that A equals B, and

A $ B if A is a subset of B but A does not equal B. We will use |A| to denote the

cardinality of a set A, and A \ B to denote the difference set of two sets A and B.

The natural numbers N include 0. We use the symbol
∑′ to denote a sum over a

(possibly) infinite index set for which all but finitely many summands are zero.

All rings in this thesis, with the only exception being Section 4.4, are commu-

tative and have a unit, always denoted by 1. Subrings have the same 1, and ring

morphisms preserve the 1. Rings are denoted by capital letters R, S, T , etc., and

ideals by old German letters a, b, m, etc.

If R is a ring, M an R-module and T ⊆ M a subset, then 〈T 〉R or 〈T 〉 denotes

the sub-R-module of M generated by T . If T = {x1, . . . , xn} is finite, we often write

〈x1, . . . , xn〉R instead of 〈{x1, . . . , xn}〉R.

The characteristic of a ring R is the uniquely determined non-negative generator

of the kernel of the unique ring morphism Z → R. Fields are assumed to be com-

mutative and to satisfy 1 6= 0. Therefore, their characteristic is either 0 or a prime.

If q is a power of a prime we will write Fq for the finite field with q elements. If n is

an integer, we will denote by Zn the quotient of Z by the ideal 〈n〉
Z
. If p is a prime

we will identify Zp and Fp.
The kernel of a morphism ϕ is denoted by kerϕ and the image by imϕ.

4



1.5. A Short Introduction to Category Theory

If A ∈ Rn×m is a matrix, then A•j will denote the j-th column of A, and Ai• the

i-th row of A. More generally we will use • as a placeholder symbol; for example,√• will denote the square root map x 7→ √
x.

Zero objects, like the zero ring, the zero ideal, the zero group, the zero module,

etc., are denoted simply by 0.

If a and b are elements of a commutative ring R, we say a divides b if there exists

some c ∈ R such that ac = b. If this is the case we write a | b and otherwise a - b.
Let S = R[x1, . . . , xn] be a polynomial ring and f ∈ S. We write ∂f

∂xi
for the

formal differentiation of f with respect to the indeterminate xi. Furthermore, we

write f |xi=ai for f evaluated in xi with the value ai.

If X is a set and ∼ an equivalence relation on X, we write X/∼ for the set of

equivalence classes of ∼ and [x]∼ or [x] for the equivalence class of x ∈ X in X/∼.

1.5 A Short Introduction to Category Theory

In this thesis we require some category theory. We only want to give the definition

of a category, of a functor, of a natural transformation, and of a product here and

present several categories that we need. A more complete introduction can be found,

for example, in [BW85, Chapter 1].

We will need one concept from Set Theory, namely the notion of a class. A class

can be thought of as a “very big set” and in the cases appearing in this thesis one

can simply think of classes as sets. The interested reader can find more information

about this matter in many sources about Set Theory and Category Theory.

A category C is a class of objects X ∈ C together with a set HomC (A,B)

of morphisms associated to every two objects A,B ∈ C , satisfying the following

conditions (where we write A
f→ B for a morphism f ∈ HomC (A,B)):

(i) For every object A ∈ C there is a uniquely determined idA ∈ HomC (A,A).

(ii) If A
f→ B and B

f→ C are morphisms for objects A,B,C ∈ C , then one has a

morphism g ◦ f ∈ HomC (A,C).

(iii) If A
f→ B

g→ C
h→ D are morphisms for objects A,B,C,D ∈ C , then h◦(g◦f) =

(h ◦ g) ◦ f .

(iv) If A
f→ B is a morphism, then f ◦ idA = f = idB ◦ f .

We will also write f : A → B for a morphism f ∈ HomC (A,B). A morphism f :

A→ B is an isomorphism if there exists a morphism g : B → A such that f ◦g = idB

and g ◦ f = idA.

If D is another category, a (covariant) functor F : C → D is a rule assigning

every object A ∈ C an object F(A) ∈ D , and every morphism f ∈ HomC (A,B),

A,B ∈ C a morphism F(f) ∈ HomD(F(A),F(B)), such that the following relations

hold:

(i) If A
f→ B

g→ C are morphisms with A,B,C ∈ C , then F(g ◦ f) = F(g) ◦F(f).

(ii) For every A ∈ C we have F(idA) = idF(A).
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Thus, a functor F : C → D induces a mapping HomC (A,B) → HomD(F(A),F(B))

for all every pair of objects A,B ∈ C . If this induced mapping is injective we call

F faithful, and if it is surjective we call F full.

A contravariant functor F : C → D is almost the same as a covariant functor,

except that it induces a map HomC (A,B) → HomD(F(B),F(A)) and F(g ◦ f) =

F(f)◦F(g). For every category C one can define an opposite category C op with the

same objects as C such that the “identity functor” assigning every object to itself and

every morphism to itself is a contravariant functor from C to C op. Clearly (C op)op =

C and the contravariant functors C → D are in a natural one-to-one correspondence

with the covariant functors C op → D .

If F : C → D and G : D → E are functors, one gets a functor G ◦ F : C → E .

This construction yields the Category of Categories, whose objects are categories

and whose morphisms are functors.

If C is a category, a subcategory D of C is a category D , such that every ob-

ject A ∈ D is also an object in C and for every two objects A,B ∈ D , the set

HomD(A,B) is a subset of HomC (A,B), where this inclusion preserves the identi-

ties idA, A ∈ D and the concatenation of morphisms. The inclusion map is a faithful

functor called the inclusion functor. We say D is a full subcategory if the inclusion

functor is full.

If F ,G : C → D are two functors, a natural transformation T : F → G is a

rule assigning every object A ∈ F a morphism T (A) : F(A) → G(A), such that for

every morphism f : A→ B the diagram

F(A)
T (A) //

F(f)
��

G(A)

G(f)
��

F(B)
T (B)

// G(B)

commutes. If for every A ∈ C the morphism T (A) : F(A) → G(A) is an isomor-

phism we say that T is an isomorphism of F and G, and write F ∼= G.

Let C and D be two categories and F : C → D and G : D → C be two functors

(both either covariant or contravariant). Then C and D are called an equivalence of

categories, and C and D are called equivalent, if there are isomorphisms of functors

F ◦ G ∼= idD and G ◦ F ∼= idC .

Let C be a category, I be an arbitrary index set, and for every i ∈ I, let an

object Ai ∈ C be given. Then a product
∏
i∈I Ai is an object A ∈ C , together with

morphisms fi : A→ Ai for every i ∈ I, such that for every other object B ∈ C and

set of morphisms gi : B → Ai there exists a unique morphism g : B → A, such that

for every i we have fi ◦ g = gi. A coproduct
∐
i∈I Ai in C is a product of the Ai’s in

C op. One can easily show that if a product or coproduct exists, it is unique up to a

unique isomorphism.

Finally, we want to introduce several categories:

(a) The Category of Sets Set, whose objects are sets and whose morphisms are

functions between these sets. Note that in literature this category is often also

denoted by Ens, standing for the French word ensemble.

The product in Set corresponds to the cartesian product, and the coproduct

corresponds to the disjoint union.
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(b) The Category of Groups Grp (respectively the Category of Abelian Groups Ab),

whose objects are (Abelian) groups and whose morphisms are group morphisms.

The product in Ab corresponds to the direct product, and the coproduct to

the direct sum. In Grp the product corresponds to the direct product, and the

coproduct of finitely many operands to the free group product.

(c) The Category of R-algebras A lg(R), R being a ring, whose objects are R-

algebras and whose morphisms are R-algebra morphisms. The Category of

Rings Ring is the category of Z-algebras.

The product in A lg(R) corresponds to the direct product, and the coproduct

of finitely many operands to the tensor product over R.

(d) If R is a ring, the Category of R-modules Mod(R), whose objects are R-modules

and whose morphisms are R-module morphisms.

The product in Mod(R) corresponds to the direct product, and the coproduct

to the direct sum.

1.6 A Short Introduction to Complexity Theory

In this section we want to give a small introduction to Complexity Theory. For more

information see for example [HMU01] or [MvOV96, pp. 57–63, Section 2.3].

We call an algorithm deterministic if for every run with the same input, the same

output is achieved; otherwise we call it probabilistic or randomized.

Let f : N → R>0 be a positively valued function. Define

O(f) =
{
g : N → R>0 lim

n→∞
g(n)
f(n) <∞

}

and

o(f) =
{
g : N → R>0 lim

n→∞
g(n)
f(n) = 0

}
.

We will often write g = O(f) respectively g = o(f) instead of g ∈ O(f) respectively

g ∈ o(f), or simply say a function g is O(f) respectively o(f).

Let A be an algorithm whose running time is bounded by f(n) > 0, where n is

the size of the input. Then A is called polynomial time bounded if f = O(nk) for

some k ∈ N, and exponential time bounded if f = O(en).

We say a problem is deterministic respectively randomized bounded by a function

if there exists a deterministic respectively randomized algorithm solving the problem

that is bounded by this function.

We say a problem A reduces (in polynomial time) to a problem B if there exists

a deterministic polynomial time algorithm transforming instances of problem A into

instances of problem B and converting the solution back. This means that problem A

is easier than problem B. If A reduces to B and B reduces to A, we say that A

and B are (polynomial time) equivalent problems. One similarly defines the notions

of a randomly polynomial time reduction and of being randomly polynomial time

equivalent.

Clearly, it might not only be important to consider the speed of an algorithm

but also its memory consumption, but we will not discuss this here.
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Chapter 2

Tools from Commutative

Algebra

This chapter shall serve as a presentation of many tools from commutative algebra

that are used in this thesis. Most proofs are omitted, but references to the literature

are given in these cases. However, before we start with commutative algebra, we

want to state an important result from group theory:

Theorem 2.0.1 (Structure Theorem for Finitely Generated Abelian Groups).

[SS88, part I, p. 261, Hauptsatz 39.8] Let G be a finitely generated Abelian group.

Then there exist unique numbers a1, . . . , an ∈ N>0 such that ai divides ai+1, i =

1, . . . , n− 1 and either a1 > 1 or n = 1, and a unique number r ∈ N such that

G = Zr ⊕
n⊕

i=1

Zai .

From this theorem one easily gets the following corollary, which can also be

proven on its own without much work, but which is of great help. Both the theorem

and corollary will be intensively used in Chapter 4 to analyze the group structure

of the group of points of an elliptic curve.

Corollary 2.0.2. If G is a finite Abelian group and p a prime dividing |G|, then

there exists an element of order p in G.

As already stated, we will always mean a commutative ring with a unit when we

talk about a ring. If R is a ring and r ∈ R, we use the following notations:

(a) We denote by R∗ the group of units in R, i. e.

R∗ = {r ∈ R | ∃r′ ∈ R : rr′ = 1}.

(b) If there is an element r′ ∈ R \ {0} such that rr′ = 0, we call r a zero-divisor. A

ring R whose only zero-divisor is 0 is called a domain.

(c) If r satisfies r2 = r, we call r idempotent. As 0 and 1 are always idempotent,

they are called the trivial idempotents.
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(d) If r satisfies rn = 0 for a natural number n > 0, we call r nilpotent. The smallest

such n is called the nilpotence index of r. The set of all nilpotent elements is

denoted by RadR, and is called the radical of R. In fact, it is an ideal, as we

will see in Lemma 2.1.22.

(e) If RadR = 0 we say that R is reduced.

(f) We say that R is a unique factorization domain if it is a domain in which every

non-unit r ∈ R \ {0} can be uniquely (up to order and multiplication by units)

written as the product of irreducible elements. Note that in this case every

irreducible element is prime.

A very important theorem in commutative algebra is the Chinese Remainder

Theorem, a generalization of the Chinese Remainder Theorem for Integers, which

we will present later.

Proposition 2.0.3 (Chinese Remainder Theorem). [Eis95, p. 79, exercise 2.6]

Let R be a ring and a1, . . . , an ideals in R such that ai + aj = R for i 6= j. Then

R

/( n⋂

i=1

ai

)
∼=

n∏

i=1

R/ai.

In commutative algebra, objects that satisfy a chain condition are of special

interest. These chain conditions impose a lot of additional structure that is needed

for many results. In particular the Artinian condition will turn out to be very

strong, and the class of Artinian rings will be the class of rings for which all methods

developed in this thesis will work.

Definition 2.0.4. Let R be a ring.

(a) We call R Artinian if every descending chain of ideals eventually becomes sta-

tionary, i. e. if for every chain of ideals

a1 ⊇ a2 ⊇ a3 ⊇ · · ·

in R there is an n0 > 0 such that an+1 = an for all n ≥ n0.

(b) We call R Noetherian if every ascending chain of ideals eventually becomes

stationary, i. e. if for every chain of ideals

a1 ⊆ a2 ⊆ a3 ⊆ · · ·

in R there is an n0 > 0 such that an+1 = an for all n ≥ n0.

Remark 2.0.5. Clearly, every finite ring R is Artinian and Noetherian, as well as

every field. On the other hand, the integers Z are Noetherian but not Artinian.

Note that finite rings are of main interest in applications (see Chapter 5). We

next characterize the property of being Noetherian by the ideals in R and state

two important mechanisms that can be used to generate new Noetherian rings from

Noetherian rings.
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Proposition 2.0.6. Let R be a ring.

(a) [Eis95, pp. 46f, Exercise 1.1] A ring is Noetherian if, and only if, each of its

ideals is finitely generated.

(b) [Eis95, p. 27, Theorem 1.2] (Hilbert Basis Theorem) If R is Noetherian, then

so is R[x1, . . . , xn].

(c) [Eis95, p. 28, Corollary 1.3] If a ⊆ R is an ideal in a Noetherian ring, then R/a

is Noetherian.

2.1 Nilpotents, Ideals and Some Tools

2.1.1 Taylor Expansion and the Newton-Hensel Lemma

The material in this section is based on the books [SS88, parts I and II]. Our aim is

to prove the Lemma of Newton-Hensel, which raises zeros of a polynomial in R/a to

zeros in R, where a is an ideal only containing nilpotent elements. We will need this

result in Chapter 4 and it will allow us to describe the points on an elliptic curve

over a ring R if the points of the curve over R/a are known.

For this we need an analogon to the Taylor expansion from analysis, which we

will state first:

Proposition 2.1.1 (Taylor Expansion). [SS88, part II, p. 26, 52.5] Let f ∈
R[x1, . . . , xn] and a ∈ Rn. Then there exists a unique family (aα)α∈Nn ∈ RNn

with

only finitely many elements 6= 0, such that

f =
∑′

α∈Nn

aα(x− a)α ∈ R[x1, . . . , xn],

where xα =
∏n
i=1 x

αi
i . Moreover, one has α! · aα = ∂|α|f

∂xα (a), where α! =
∏n
i=1 αi and

∂|α|
∂xα = ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

.

Corollary 2.1.2. Let f ∈ R[y] and x, t ∈ R. Then there exists an s ∈ R such that

f(x+ t) = f(x) +
∂f

∂y
(x)t+ st2.

In fact, if x is fixed, s is a polynomial over R in t.

As already mentioned, nilpotent ring elements and ideals play an important

role in this thesis. We will now state some facts about nilpotent ideals and ideals

consisting only of nilpotent elements.

Definition 2.1.3. Let R be a ring and a ⊆ R an ideal.

(a) If every element of a is nilpotent, i. e. if a ⊆ RadR, then a is called a nilideal.

(b) If an = 0 for some n ∈ N>0, then a is called nilpotent. The smallest integer n,

such that an = 0, is called the nilpotence index of a.

Lemma 2.1.4. Let R be a ring and r ∈ R be nilpotent. Then for a ∈ R we have

a− r ∈ R∗ if, and only if, a ∈ R∗.

11
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Proof. Let n > 0 be the nilpotence index of a. We only have to show that a ∈ R∗

implies a − r ∈ R∗, the other direction follows by using the same argument with

(a − r) and (a − r) − (−r). The remainder of the proof is shown in [SS88, part I,

p. 91, 15.1(3)].

Lemma 2.1.5. If a is a nilpotent ideal in a ring R, then the sequence an strictly

decreases until it eventually becomes zero.

Proof. Assume an = an+1 for some n. Then an+k = an+1ak−1 = anak−1 = an+k−1

if k > 1 and, therefore, an+k = an for every k ≥ 0. Thus, it must hold that an = 0

since a is nilpotent.

If an ideal is finitely generated, it is nilpotent if, and only if, it is a nilideal. We

will show this in the following two lemmas:

Lemma 2.1.6. Let R be a ring and a a nilideal in R. If a is finitely generated, then

a is nilpotent.

Proof. We show this by induction on the number of generators. If a = 〈r〉, and

r is nilpotent, then surely a is nilpotent. Now assume a = a1 + a2, where ai is

nilpotent with index ni. Every element of (a1 + a2)
n1+n2 is a sum of elements of the

form r =
∏n1+n2
i=1 ri, where ri ∈ a1 ∪ a2. If more than n1 of the ri’s are in a1, then

r ∈ an1
1 = 0, and otherwise r ∈ an2

2 = 0.

Lemma 2.1.7. Let R be a ring and a an ideal in R generated by nilpotent elements.

Then a is a nilideal.

Proof. Since the generators are a subset of RadR, clearly a ⊆ RadR since RadR is

an ideal.

Corollary 2.1.8. In a Noetherian ring, an ideal is nilpotent if, and only if, it is a

nilideal.

Proof. Let R be a Noetherian ring and a ⊆ R an ideal. If a is a nilideal, by

Lemma 2.1.6 it is nilpotent, since it is finitely generated by the Noetherian assump-

tion. On the contrary, if a is not a nilideal, it contains an element x ∈ R which is

not nilpotent. But then 0 6= xn ∈ an for every n ∈ N. Hence, a is not nilpotent

either.

We can now state the Lemma of Newton-Hensel, a version of the well-known

Lemma of Hensel. This version can also be found in [SS88, part II, p. 727f].

Proposition 2.1.9 (Lemma of Newton-Hensel). Let R be a ring and a ⊆ R

a nilideal. If f ∈ R[x] is a polynomial and a ∈ R such that f(a) = 0 in R/a, and
∂f
∂x (a) is a unit in R/a, then there exists a unique â ∈ R such that a − â ∈ a and

f(â) = 0 in R.

Proof. First consider the case where a is nilpotent. We construct a sequence an ∈ R,

n ∈ N, such that an − a ∈ a and f(an) ∈ an+1. Since a is nilpotent, eventually

f(an) = 0.
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Choose g ∈ R such that g = (∂f∂x (a))−1 in R/a, and define a0 := a and an+1 :=

an − gf(an) for n ∈ N. For n = 0, we clearly have a0 − a ∈ a and f(a0) ∈ a1. Now

assume the assertions hold for some n ≥ 0. Clearly we have an+1−an = −gf(an) ∈ a

and, hence, an+1 − a ∈ a. By Corollary 2.1.2, for x = an and t = −gf(an) we get

an e ∈ R such that

f(an+1) = f(x+ t) = f(x) + ∂f
∂x (x)t+ et2

= f(an) − g ∂f∂x (an)f(an) + e · g2f(an)
2

= f(an)(1 − g ∂f∂x (an)) + g2f(an)
2e.

Now 1 − g ∂f∂x (an) ∈ a, since g ∂f∂x (an) = g ∂f∂x (a) = 1 in R/a. Hence, f(an+1) ∈
a(n+1)+1 + a2(n+1) = an+2. Thus, the assertions also hold for an+1.

If we consider the case where a is a nilideal, the construction above still works,

since one can operate in the subring R′ of R generated by a, g, and by the coefficients

of f . This ring is clearly Noetherian as being a finitely generated Z-algebra. Thus,

the nilideal a′ = a∩R′ is finitely generated and, hence, is nilpotent by Lemma 2.1.6.

Since we still have an − a ∈ a′ and f(an) ∈ (a′)n+1 for all n ∈ N, the sequence an

still eventually gives a solution.

To show uniqueness, let â′ ∈ R be another solution, i. e. we have f(â′) = 0 and

â′ − a ∈ a. By plugging x = â and t = â′ − â into Corollary 2.1.2, we get an e ∈ R

such that

0 = f(â′) = f(x+ t) = f(x) + ∂f
∂x (x)t+ et2

= f(â) + ∂f
∂x (â)(â′ − â) + (â′ − â)2e = (â′ − â)c,

where c := ∂f
∂x (â) + e(â′ − â). In R/a, we see that c = ∂f

∂x (â) is a unit and, therefore,

there exists some b ∈ R and d ∈ a such that bc = 1 + d. Since d is nilpotent, we

see that bc is a unit in R by Lemma 2.1.4. Therefore, c also has to be a unit and,

hence, â = â′.

Remark 2.1.10. Note that the proof gives a method to effectively compute â from

a.

2.1.2 Resultants

Resultants allows to effectively compute whether two univariate polynomials have a

common factor, by evaluating the determinant of a matrix. Moreover, resultants can

be used to check whether a univariate polynomial has multiple roots in the algebraic

closure. The latter will be the main use of resultants in this thesis, as we want to

ensure for elliptic curves that a cubic polynomial has only simple roots.

Let F be an arbitrary field. We start with defining and characterizing what a

multiple or simple root is for a univariate polynomial.

Definition 2.1.11. Let f ∈ F[x]. Then f has a multiple root in a ∈ F if we can

write f = (x − a)2h, where h ∈ F[x]. If f(a) = 0, but a is not a multiple root, we

say f has a simple root in a.

Lemma 2.1.12. Let f ∈ F[x]\F a polynomial. Then f has a multiple root in a ∈ F
if, and only if, f(a) = 0 = ∂f

∂x (a).
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Proof. This follows directly from Corollary 2.1.2.

The next characterization of when a polynomial has no multiple roots over the

algebraic closure can be used to effectively compute whether this is the case. How-

ever, this is not very useful as it does not easily allow the evaluation of a ‘check

polynomial’ in the coefficients of the polynomial f and to simply test if the result is

zero. This will be possible with resultants.

Lemma 2.1.13. Let f ∈ F[x] \ F. Then f has no multiple roots over the algebraic

closure of F if, and only if, f and ∂f
∂x are coprime.

Proof. If f has a multiple root in a ∈ F, where F is the algebraic closure of F, then

f = (x− a)2h where h ∈ F[x], and ∂f
∂x = (x− a)h̃ with h̃ ∈ F[x]. Then the minimal

polynomial of a over F divides both f and ∂f
∂x and, hence, they are not coprime.

For the other direction, assume f and ∂f
∂x have a common factor h ∈ F[x] \ F.

Then h has a root in the algebraic closure F, which is thus a common root of f and
∂f
∂x and, therefore, it is a multiple root of f by Lemma 2.1.12.

We will now define the resultant of two polynomials and state the main result.

Definition 2.1.14. [CLO96, pp. 150f, Definition 7] Let f, g ∈ F[x], where f =∑n
i=0 aix

i and g =
∑m

i=0 bix
i with n = deg f > 0 and m = deg g > 0. Define the

Sylvester matrix of f and g as

Syl(f, g) :=




a0 0 · · · 0 b0 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...

an
. . . 0 bm

. . . 0

0
. . . a0 0

. . . b0
...

. . .
. . .

...
...

. . .
. . .

...

0 · · · 0 an 0 · · · 0 bm




∈ K(n+m)×(n+m).

The resultant of f and g is defined as

Res(f, g) := det Syl(f, g) ∈ F.

Proposition 2.1.15. [CLO96, p. 151, Proposition 8] Let f, g ∈ F[x] \ F be two

polynomials. Then f and g are coprime if, and only if, Res(f, g) 6= 0.

The following corollary provides a special case of this result, which is needed for

our main application, namely testing whether a polynomial has multiple roots over

the algebraic closure.

Corollary 2.1.16. Let f ∈ F[x]\F. Then f has no multiple roots over the algebraic

closure of F if Res
(
f, ∂f∂x

)
6= 0. In particular:

(a) If f = x2 + ax+ b, then

Res
(
f, ∂f∂x

)
= det



b a 0

a 2 a

1 0 2


 = 4b+ a2 − 2a2 = 4b− a2.
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(b) If f = x3 + ax2 + bx+ c, then

Res
(
f, ∂f∂x

)
= det




c 0 b 0 0

b c 2a b 0

a b 3 2a b

1 a 0 3 2a

0 1 0 0 3




= 4a3c− 18abc+ 27c2 − a2b2 + 4b3.

Consider the special case a = 0. Then

Res
(
f, ∂f∂x

)
= 27c2 + 4b3.

Proof. By Lemma 2.1.13 we know that f has no multiple roots over F if, and only

if, f and ∂f
∂x are coprime, which by Proposition 2.1.15 is the case if, and only if, the

resultant is non-zero.

2.1.3 Prime and Radical Ideals

In commutative algebra and algebraic geometry, prime ideals and radical ideals

appear in many places. We want to state two facts about prime ideals, introduce

radical ideals, and state some of their important properties.

The first result shows how to construct prime ideals with a certain property.

Definition 2.1.17. Let R be a ring. A multiplicative subset of R is a subset S ⊆ R

such that 1 ∈ S, and for every a, b ∈ S we also have ab ∈ S.

Example 2.1.18. Let R be a ring and a an ideal in R. Then R\a is a multiplicative

subset if, and only if, a is prime.

Lemma 2.1.19. [Eis95, p. 70, Proposition 2.11] Assume S is a multiplicative

subset of a ring R and a is an ideal not meeting S. Then there exists a prime ideal p

containing a but not meeting S.

To be more exact, p can be taken as an ideal maximal with respect to the property

that it contains a but does not meet S.

If p is a prime ideal in R and ab ∈ p for a, b ∈ R, then either a ∈ R or b ∈ R.

The same holds if one replaces a and b by arbitrary ideals a and b in R:

Lemma 2.1.20. Let R be a ring, p ⊆ R a prime ideal, and a1, . . . , an ⊆ R ideals

such that
∏n
i=1 ai ⊆ p. Then there exists an i such that ai ⊆ p.

Proof. Assume that ai 6⊆ p for every i. Then for every i there exists an ai ∈ ai such

that ai 6∈ p. Consider
∏n
i=1 ai ∈

∏n
i=1 ai; since p is prime, there must exist one i

such that ai ∈ p, which is a contradiction.

We now proceed to define the radical of an ideal.

Definition 2.1.21. Let R be a ring and a an ideal in R. Define the radical of a to

be the set √
a := {f ∈ R | fn ∈ a for some n ≥ 1}.

If a =
√

a, then a is called a radical ideal.

15



Chapter 2. Tools from Commutative Algebra

If R = F[x1, . . . , xn] for a field and a is an ideal in R, one can consider the set of

common zeros of all f ∈ a. Then the set of the common zeros of all f ∈ √
a is the

same as that of a. In fact, if F is algebraically closed we will see that
√

a contains

any other ideal sharing this property. Next, we want to state several properties of

radicals and radical ideals:

Lemma 2.1.22. [Eis95, p. 33] Let R be a ring and a an ideal in R.

(1) We have that RadR =
√

0.

(2) The radical
√

a of an ideal a is again an ideal in R, and it is a radical ideal.

(3) If a ⊆ b is a chain of ideals, then
√

a ⊆
√

b.

(4) If p is a prime ideal, then p is radical.

(5) [Eis95, p. 71, Corollary 2.12] If a 6= R is an ideal in R, then

√
a =

⋂
{p ⊆ R | p prime and a ⊆ p}.

2.1.4 Tensor Products

Let R be an arbitrary commutative ring with a unit. The tensor product is the

coproduct in the category of R-algebras and has, similar to prime ideals, an im-

portant position in commutative algebra and algebraic geometry. We first state the

definition and its existence before we show how it can be used.

Definition 2.1.23. Let M and N be R-modules. An R-module T , together with an

R-bilinear map b : M ×N → T , is called the tensor product of M and N if it fulfills

the following universal property:

If L is another R-module and ϕ : M ×N → L a bilinear map, then there exists

a unique R-linear map ψ : T → L such that ψ ◦ b = ϕ.

We use the notation x⊗ y for b(x, y) if x ∈ M , y ∈ N , and write M ⊗RN for

T , or simply M ⊗N if R is clear from the context.

Remarks 2.1.24.

(a) [Eis95, p. 573] If the tensor product of two R-modules M and N exists, it is

unique up to isomorphism. Thus, it is justified to talk about the tensor product

of M and N .

(b) [Eis95, p. 573] Moreover, since the set of all bilinear maps from M × N to L

is the same as HomR(M,HomR(N,L)), one can rephrase the universal property

as

HomR(M ⊗N,L) ∼= HomR(M,HomR(N,L)).

(c) The tensor product of two R-algebras is again an R-algebra by (a⊗ b)(c⊗ d) :=

(ac)⊗(bd).

Proposition 2.1.25. [Eis95, p. 573] In the category of R-modules, tensor products

do exist.
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Sketch of Proof. Let M and N be two R-modules. Consider the free R-module T̃

generated by all formal objects of the form x⊗ y for x ∈ M , y ∈ N , and consider

the submodule T ′ generated by all elements of the form

(λx+ λ′x′)⊗(µy + µ′y′) − λµ(x⊗ y) − λ′µ(x′⊗ y) − λµ′(x⊗ y′) − λ′µ′(x′⊗ y′),

where x, x′ ∈ M , y, y′ ∈ N and λ, λ′, µ, µ′ ∈ R. We define T := T̃ /T ′ and b :

M ×N → T by (x, y) 7→ x⊗ y. From the definition of T ′ it follows directly that b is

bilinear. One shows that T is the tensor product ofM andN and that b : M×N → T

is the associated bilinear map.

Now we will state several basic properties of the tensor product, beginning with

its functoriality.

Proposition 2.1.26. If M , N and L are R-modules and ϕ : M → N is a morphism,

there exists a unique morphism M ⊗L → N ⊗L, mapping x⊗ z onto ϕ(x)⊗ z for

x ∈ M , z ∈ L. Hence, •⊗R L is a functor from the category of R-modules to the

category of R-modules.

Proof. It is easy to see that there is exactly one homomorphism x⊗ z 7→ ϕ(x)⊗ z.

Proposition 2.1.27. See [Eis95, p. 574, Proposition A2.1]. Let M , N and L be

R-modules.

(1) We have that M ⊗(N ⊗L) ∼= (M ⊗N)⊗L by a natural isomorphism, given by

x⊗(y⊗ z) 7→ (x⊗ y)⊗ z.

(2) We have that M ⊗N ∼= N ⊗M by a natural isomorphism, given by x⊗ y 7→
y⊗x.

(3) We have that (
⊕

i∈IMi)⊗L ∼=
⊕

i∈I(Mi⊗L).

(4) If M → N → P → 0 is a right-exact sequence with another R-module P , then

(M ⊗L) → (N ⊗L) → (P ⊗L) → 0 is right-exact.

Flatness The property of being flat has a very important geometric interpretation

(see for example Section 3.4.2 and [EH00, pp. 70–81]). We first want to cover the

algebraic aspects.

Definition 2.1.28. Let L be an R-module. Then L is called flat over R, or R-flat,

if for every left-exact sequence of R-modules 0 →M → N → P the sequence

0 // (M ⊗L) // (N ⊗L) // (P ⊗L)

is still left-exact. A morphism R→ S of rings is said to be flat if it makes S flat as

an R-module. An R-algebra S is flat if R→ S is flat.

Remark 2.1.29. Thus, by Proposition 2.1.27 (4), L is flat if, and only if, the

functor •⊗R L is exact, i. e. it preserves short exact sequences.

We will now show that some rings which we will need later are flat over a base

ring. We will later learn of another important class in Section 2.2.1.
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Chapter 2. Tools from Commutative Algebra

Proposition 2.1.30. Let R be a ring and let F be a free R-module. Then F is flat

over R.

Proof. This follows directly from M ⊗RR ∼= M and Proposition 2.1.27 (3).

Corollary 2.1.31. Let R be a ring and S = R[x1, . . . , xn]. Then S is flat over R.

Proof. Obviously, S is a free R-module (of infinite rank) and, therefore, flat over R

by Proposition 2.1.30.

To prove one of the main results of this subsection we first need two lemmas. One

is the Snake Lemma from homological algebra, and the second one gives a criterion

when tensoring preserves injections and surjections.

Lemma 2.1.32 (Snake Lemma). [Eis95, pp. 640f, Exercise A3.10] Let R be a

ring. Let the following diagram of R-modules be commutative and have exact rows:

0 // A //

α

��

B //

β
��

C //

γ

��

0

0 // A′ // B′ // C ′ // 0

Then there is an exact sequence

0 // kerα // kerβ // ker γ

ttiiiiiiiiiiiiiiiiiiiii

cokerα // cokerβ // coker γ // 0.

Lemma 2.1.33. Let R be a ring, S an R-module, ϕ : S → S an R-module morphism

and M another R-module. Consider the morphism ϕ⊗ idM : S⊗M → S⊗M from

Proposition 2.1.26, which is defined by s⊗m 7→ ϕ(s)⊗m.

(a) If ϕ is injective, then so is ϕ⊗ idM .

(b) If ϕ is surjective, then so is ϕ⊗ idM .

(c) If ϕ is bijective, then so is ϕ⊗ idM .

Proof.

(a) Let N be the free R-module generated by the s⊗m, s ∈ S, m ∈M , and P the

sub-R-module of N such that N/P = S⊗M (see the proof of Proposition 2.1.25

for the exact definition of P ). One clearly sees that the R-linear map ψ : N →
N , s⊗m 7→ ϕ(s)⊗m is injective on N , and we have that ψ(P ) ⊆ P and

ψ({P ) ⊆ {P . Therefore, ψ induces an injective map on N/P = S⊗M , which

is clearly ϕ⊗ idM .

(b) This follows from •⊗RM being right-exact by Proposition 2.1.27 (d).

(c) Follows from (a) and (b).

The following result will be of great help in Proposition 2.3.17, which in turn

will be useful in Section 3.8.2 where we present a class of curves over rings.
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2.1.4. Tensor Products

Proposition 2.1.34. Let R be a ring, S a flat R-algebra and f ∈ S a non-zero-

divisor. Then S/ 〈f〉 is flat over R.

Proof. The idea for this proof is from [Bro05]. Consider the map “multiplication

by f” on S, denoted by ×f , which is clearly injective since f is a non-zero-divisor.

Consider the sequence

0 // S
� � ×f // S // // S/ 〈f〉 // 0;

since im(×f) = 〈f〉 = ker(S → S/ 〈f〉) it is exact. Let

0 // M
� � // N // // P // 0

be an exact sequence of R-modules. Since tensoring is always right-exact, S is flat

over R and, by the previous lemma, we know that all rows and columns in the

following diagram are exact, where K = ker(M ⊗R S/ 〈f〉 → N ⊗R S/ 〈f〉):

0 0 0

K // M ⊗R S/ 〈f〉

OO

// N ⊗R S/ 〈f〉 // //

OO

P ⊗R S/ 〈f〉 //

OO

0

0 // M ⊗R S

OOOO

� � // N ⊗R S // //

OOOO

P ⊗R S //

OOOO

0

0 // M ⊗R S
?�

idM ⊗(×f)

OO

� � // N ⊗R S // //?�

idN ⊗(×f)

OO

P ⊗R S //?�

idP ⊗(×f)

OO

0

0

OO

0

OO

0

OO

Clearly this diagram is commutative. We have to show K = 0. However, by the

Snake Lemma 2.1.32 with α = idM ⊗R(×f), β = idN ⊗R(×f) and γ = idP ⊗R(×f),

we get that K = ker(idP ⊗R(×f)) = 0.

Tensoring of Polynomial Rings The tensor product is very powerful for mod-

ifying finitely generated R-algebras. We want to present several methods we will

need later in this thesis.

Lemma 2.1.35. [SS88, part II, pp. 591f, §82, Beispiel 7] Let R be a ring, ϕ : R→ T

a ring morphism and S = R[x1, . . . , xn]/a for some ideal a in R[x1, . . . , xn]. Then

S⊗R T ∼= ST , where ST := T [x1, . . . , xn]/ 〈ϕ(a)〉T .

Lemma 2.1.36. [SS88, part II, pp. 591f, §82, Beispiel 7] Let R be a ring, A =

R[x1, . . . , xn]/a, B = R[y1, . . . , ym]/b and S = R[x1, . . . , xn, y1, . . . , ym]/ 〈a, b〉. Then

A⊗RB ∼= S by the isomorphism f ⊗ g 7→ fg.

Multilinear Algebra Before closing this subsection we want to state some defi-

nitions from multilinear algebra, which are needed in algebraic geometry.
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Definition 2.1.37. [Eis95, p. 575] Let R be a ring and M be an R-module.

(a) The tensor algebra TR(M) is the graded (see Section 2.3.1), non-commutative

R-algebra

TR(M) :=
∞⊕

n=0

M⊗n,

where M⊗n is the n-fold tensor product of M with itself, with the two special

cases M⊗ 0 = R and M⊗ 1 = M . The product of x1 ⊗ · · ·⊗xn ∈ M⊗n and

y1 ⊗ · · ·⊗ ym ∈M⊗m is

x1 ⊗ · · ·⊗xn⊗ y1 ⊗ · · ·⊗ ym ∈M⊗(n+m).

(b) The exterior algebra
∧
RM is the algebra obtained from TR(M) by factoring by

the two-sided ideal generated by the elements x⊗x, x ∈M .

(c) The n-th exterior power
∧n
RM is the degree-n-component of the graded alge-

bra
∧
RM .

2.2 Rings

In this section we want to look at several classes of rings. Local rings often appear

in commutative algebra and algebraic geometry; they can, for example, be obtained

from arbitrary rings by localizing at a prime ideal. This will be examined in Sec-

tion 2.2.1. In the next section we will cover Artinian rings, which turn out to be

Noetherian and have important properties. They share several properties with finite

rings, which we need later in this thesis. Finally we will state some results from the

Theory of Fields, which will also be needed later.

However, before looking at local rings, we want to emphasize two important

properties of idempotent elements:

Remark 2.2.1. Let R be a ring, M be an R-module and e ∈ End(M) be an

idempotent endomorphism. Then e is a projection onto im e in the sense that e|im e =

idim e:

Let v = e(w) ∈ im e for some w ∈M . Then e(v) = e(e(w)) = e2(w) = e(w) = v.

Assume M = R and e ∈ R to be idempotent. Then the map x 7→ ex is an

idempotent R-module endomorphism. This can be used to decompose the ring if e

is a non-trivial idempotent:

Proposition 2.2.2. Let R be a ring and e ∈ R be a non-trivial idempotent. Then R

can be decomposed as the product of two non-zero rings R1 and R2, where R1 = eR

and R2 = (1 − e)R.

Proof. If e is idempotent, we have (1 − e)2 = 1 − 2e + e2 = 1 − e, so 1 − e is also

idempotent. In addition, it is clear that R1 and R2 are non-zero, since neither e nor

1 − e is 0.

To show that R1 is a ring, it suffices to show that R1 has a unit. If er ∈ R1,

then e(er) = e2r = er, and since e = e1 ∈ R1, this is the unit element of R1.
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Furthermore, it is trivial to see that r 7→ er is a surjective ring morphism from R to

R1.

As the same is also true for R2 and the surjective ring morphism R → R2, we

will show next that the combined morphism ϕ : R → R1 ×R2, r 7→ (er, (1 − e)r) is

a ring isomorphism. If ϕ(r) = 0, then er = 0 = (1− e)r = r− er and, hence r must

be 0 and ϕ is injective. If (er1, (1 − e)r2) ∈ R1 ×R2, we get

ϕ(er1 + (1 − e)r2) = (e2r1 + e(1 − e)r2, (1 − e)er1 + (1 − e)2r2)

= (er1, (1 − e)r2),

so ϕ is also surjective.

Next, we want to define two classes of rings that often appear, in particular in

algebraic geometry:

Definition 2.2.3. Let R denote a ring. We say that R is local if it has a unique

maximal ideal.

Definition 2.2.4. Let G be a totally ordered Abelian group.

(a) A valuation on a field F is a group morphism v : F∗ → G that satisfies v(x+y) ≥
min{v(x), v(y)} for all x, y ∈ F∗, x 6= −y.

(b) Let R be a local ring with maximal ideal m, which is a domain. Let F be the

field of fractions of R. Then R is a valuation ring if there exists a valuation v :

F∗ → G such that

(i) R = {0} ∪ {x ∈ F∗ | v(x) ≥ 0} and

(ii) m = {0} ∪ {x ∈ F∗ | v(x) > 0}.

(c) A valuation ring is called a discrete valuation ring if G = (Z,+,≤).

We will come back to valuations in Chapter 3. Before studying local rings in more

detail we want to introduce a finiteness condition for R-algebras over an arbitrary

ring R:

Definition 2.2.5. Let R be a ring. An R-algebra S is of finite presentation if S ∼=
R[x1, . . . , xn]/a for some n ∈ N and some finitely generated ideal a ⊆ R[x1, . . . , xn].

2.2.1 Local Rings and Localization

As already noted, local rings are an important class of rings. We want to characterize

local rings and to introduce a powerful tool called localization. This tool allows

several problems and questions to be reduced from arbitrary rings to local rings.

Proposition 2.2.6. [SS88, part I, p. 248, §37, Aufgabe 13] Let R be a ring. Then

the following are equivalent:

(i) The ring R is local.

(ii) The non-units of R form an ideal.
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Chapter 2. Tools from Commutative Algebra

(iii) The non-units of R form an additive subgroup.

(iv) For every r ∈ R, at least one of r and 1 − r is in R∗.

Hence, in a local ring R we have that r ∈ R is a unit if, and only if, r + s is a unit

for any non-unit s ∈ R.

If R is an Artinian ring, more characterizations of being local can be given for

R, as we will see in Section 2.2.2.

Next, we will concentrate on the concept of localization. We will follow the book

of Eisenbud ([Eis95, pp. 59ff]). Localization generalizes the concept of forming the

field of quotients of a domain to arbitrary rings.

Definition 2.2.7. Let R be a ring.

(1) If S is a multiplicative subset of R and M is an R-module, denote by S−1M or

M [S−1] the equivalence classes of elements (s,m) ∈ S×M under the equivalence

relation

(s,m) ∼ (s′,m′) :⇐⇒ ∃u ∈ S : u(ms′ −m′s) = 0.

We call M [S−1] the localization of M at S, and we will write m/s for [(s,m)]∼.

(2) If p is a prime ideal in R, by definition S := R \ p is a multiplicative subset of

R. Define Mp := S−1M as the localization of M with respect to p.

(3) For any f ∈ R denote by Rf the localization at the multiplicative subset S :=

{f i | i ∈ N}.

Remarks 2.2.8. [Eis95, pp. 59f] Let R be a ring, M be an R-module and S ⊆ R

be a multiplicative set.

(1) It is easy to see that ∼ is an equivalence relation.

(2) By defining r(m/s) := (rm)/s and (m/s)+(m′/s′) := (ms′+ms)/(ss′), we turn

S−1M into an R-module.

(3) Since R is itself an R-module, we can also form S−1R. By defining (r/s) ·
(r′/s′) := (rr′)/(ss′), S−1R becomes a ring. Furthermore, S−1M has an S−1R-

module structure, given by (r/s)(m/s′) := (rm)/(ss′).

(4) We have a natural map M → S−1M , m 7→ m/1, which is an R-module homo-

morphism.

(5) The natural map ϕ : R → S−1R is a ring homomorphism and it is injective

if, and only if, S contains no zero-divisors. More precisely, an element m ∈ M

maps to zero if, and only if, it is annihilated by an element in S, i. e. sm = 0 for

some s ∈ S.

(6) If p is a prime ideal in R, then Rp is a local ring with maximal ideal {r/s ∈ Rp |
r ∈ p, s 6∈ p}.
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(7) If ϕ : M → N is a morphism of R-modules, then S−1ϕ := ϕ̃ : S−1M → S−1N ,

m/s 7→ ϕ(m)/s is a morphism of S−1R-modules, which commutes with the

natural maps M → S−1M and N → S−1N . Moreover, if ψ : N → L is another

morphism of R-modules, then S−1(ψ ◦ ϕ) = (S−1ψ) ◦ (S−1ϕ).

Thus in categorical language, localization at S is a functor from the category of

R-modules to the category of S−1R-modules:

Mod(R) → Mod(S−1R), M 7→ S−1M.

We now give an important example of how a problem in arbitrary rings can be

reduced to a problem in local rings obtained by localization:

Lemma 2.2.9. [Eis95, pp. 67p, Lemma 2.8] Let R be a ring and M be an R-module.

(a) An element m ∈M is zero if, and only if, it goes to zero in each localization at

a maximal ideal m of R.

(b) We have that M = 0 if, and only if, Mm = 0 for every maximal ideal m of R.

The case M = R gives a useful corollary of (a):

Corollary 2.2.10. Let R be a ring and r ∈ R. Then r = 0 if, and only if, for every

maximal ideal m of R, r/1 = 0/1 in Rm.

For this reason we say that being zero is a local property : to show an element or

module is zero, it is enough to show that it is zero in the localization at every prime

ideal. There are several properties in commutative algebra and algebraic geometry

that turn out to be local; this hints at why prime ideals are important.

We want to emphasize that the localization of an R-module can also be described

in terms of the localization of R and tensoring:

Proposition 2.2.11. Let S be a multiplicative subset of R.

(1) [Eis95, p. 65, Lemma 2.4] If M is an R-module, then S−1M ∼= M ⊗R S
−1R.

(2) [Eis95, p. 66, Proposition 2.5] The R-module S−1R is flat.

Remark 2.2.12. Let S be a multiplicative subset of R. We have that (S−1R)n =

S−1(Rn) =: S−1Rn for any n ∈ N. More generally, if Mi, i ∈ I, are R-modules, then

S−1
⊕

i∈IMi =
⊕

i∈I(S
−1Mi).

Proof. This follows from Proposition 2.1.27 and Proposition 2.2.11.

We introduce the following notation: if p is a prime ideal in R, v ∈ Rn, and

A ∈ Rn×m, we write vp ∈ Rnp and Ap ∈ Rn×mp for the component-wise images of v

and A under the natural map R→ Rp.

Lemma 2.2.13. Let v1, . . . , vm ∈ Rn, and let P =
∑

iRvi be the R-module gener-

ated by the vi’s. Let p be a prime ideal in R. Then Pp is the Rp-module generated

by the vi,p’s.
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Proof. Let vi = (vi,j)j ∈ Rn and, hence, vi,p = (vi,j/1)j ∈ Rnp . Now we have

P = {∑λivi | λi ∈ R} and, according to Definition 2.2.7,

Pp =

{(∑′ λivi
)
/s λi ∈ R, s 6∈ p

}
.

Since clearly (
∑′ λivi)/s =

∑′ λi/s·vi/1, we have Pp = {∑′ λi/s·vi,p | λi ∈ R, s 6∈ p}
and, hence, Pp is contained in the Rp-module generated by the vi,p. But since Pp

also contains the vi,p, these two modules must be the same.

The next lemma shows that being injective, surjective or bijective for a R-module

morphism is also a local property.

Lemma 2.2.14. [Eis95, p. 68, Corollary 2.9] Let ϕ : M → N be a morphism of

R-modules.

(a) Then ϕ is injective if, and only if, ϕp : Mp → Np is injective for every prime p.

(b) Then ϕ is surjective if, and only if, ϕp : Mp → Np is surjective for every prime p.

(c) Then ϕ is bijective if, and only if, ϕp : Mp → Np is bijective for every prime p.

These statements also hold if we replace “every prime p” by “every maximal ideal m”.

There is a close connection between the ideals in the ring and the ideals in a

localization of it. This will be in particular important in the Theory of Schemes, as

it allows us to only look at all the prime ideals not meeting a given multiplicative

system. If the multiplicative system is taken from a prime ideal p, this allows us to

look at all prime ideals contained in p.

Proposition 2.2.15. [Eis95, p. 61, Proposition 2.2] Let R be a ring and S a

multiplicative subset of R, and let ϕ : R→ S−1R be the natural map.

(a) For any ideal a of S−1R we have ϕ−1(a)S−1R = a.

(b) The map a 7→ ϕ−1(a) is an injection from the set of ideals of S−1R into the set

of ideals of R. This map preserves ordering by inclusion, intersections and the

property of being prime.

(c) Let b be an ideal of R. Then the following are equivalent:

(i) There is an ideal a of S−1R such that b = ϕ−1(a).

(ii) It is b = ϕ−1(bS−1R).

(iii) Every s ∈ S is a non-zero-divisor modulo b, i. e. if rs ∈ b for some r ∈ R,

then r ∈ b.

(d) The map a 7→ ϕ−1(a) induces an order-preserving bijection between the primes

of S−1R and the primes of R which do not meet S.

This proposition also shows that the chain conditions we have introduced earlier

are preserved by localization:

Corollary 2.2.16. If R is Noetherian (respectively Artinian) and S is a multiplica-

tive subset of R, then S−1R is Noetherian (respectively Artinian).

Proof. This follows directly from Proposition 2.2.15 (b).
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2.2.2 Artinian Rings

In this section we will examine a class of rings that trivially contains all finite

rings and which plays an important role in this thesis. We will begin by following

Chapter 2 of [Eis95].

Definition 2.2.17. Let R be a ring and M be an R-module.

(a) A chain of submodules of M of length n is a chain

Mn ⊆Mn−1 ⊆ · · · ⊆M0 = M,

where the Mi are submodules of M .

(b) We call M simple if the only submodules of M are 0 and M itself.

(c) If Mn ⊆ · · · ⊆ M0 = M is a chain of submodules and Mi−1/Mi is simple and

non-trivial for i = 1, . . . , n, then this chain is called a composition series.

(d) The length of M is the infimum of all lengths of composition series of M . If M

has no finite composition series its lenght is ∞.

(e) We call M Noetherian respectively Artinian if every ascending respectively de-

scending chain of submodules eventually becomes stationary.

Remark 2.2.18. One directly sees that a ring R is Noetherian respectively Artinian

if, and only if, it has the same property as an R-module. Moreover, an R-module

is Noetherian if, and only if, every sub-R-module is finitely generated. Note that a

non-zero, simple R-module is isomorphic to R/m, where m is a maximal ideal.

The property of being Artinian can be characterized for a ring as follows. Inter-

estingly, being Artinian implies being Noetherian.

Proposition 2.2.19. [Eis95, p. 74, Theorem 2.14] For a ring R the following

conditions are equivalent:

(a) The ring R is Artinian.

(b) The ring R is Noetherian and every prime ideal is maximal.

(c) Seen as an R-module, R has finite length.

In every of these cases, R only has a finite number of prime ideals.

The first main result of this subsection is the structure theorem for Artinian

rings, which will be used extensively in this thesis:

Corollary 2.2.20 (Structure Theorem for Artinian Rings). [Eis95, p. 76,

Corollary 2.16 and its proof] If R is an Artinian ring, then R is the finite product

of local Artinian rings. To be exact, we have a ring isomorphism

R ∼=
⊕

m∈M

Rm,

where M is the set of all maximal ideals of R.
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We will now concentrate on local Artinian rings. Local Artinian rings can be

characterized using nilpotent elements:

Lemma 2.2.21. Let R be an Artinian ring. Then R is local if, and only if, every

non-unit is nilpotent. Moreover, if R is a local Artinian ring, its maximal ideal is

nilpotent.

Proof. Since

RadR =
√

0 =
⋂

{p | p prime of R}

by Lemma 2.1.22, and since the primes of R are exactly the maximal ideals of R by

Proposition 2.2.19, we see that every non-unit is nilpotent if, and only if, RadR is

the unique maximal ideal of R.

Now RadR is clearly a nilideal. However, since R is Artinian, it is Noetherian

by Proposition 2.2.19 and, hence, RadR is finitely generated. The last statement

follows from Lemma 2.1.6.

The following property, being known from finite rings, shows that Artinian rings

might be a good generalization of finite rings in a certain sense:

Lemma 2.2.22. Let R be an Artinian ring and r ∈ R. Then r is either a zero-

divisor or a unit.

Proof. First assume R is local. Then, according to Lemma 2.2.21, every non-unit

is nilpotent. If R is not local, write R =
∏n
i=1Ri with local Artinian rings Ri. If

r ∈ R is a unit, then its projection onto every Ri is a unit. If r is not a unit, the

projection r1Ri onto one Ri is nilpotent and, therefore, a zero-divisor in Ri. For this

i choose an element s ∈ Ri \ {0} such that s(r1Ri) = 0. But then sr = (s1Ri)r =

s(r1Ri) = 0 in R.

Now we will state a useful characterization of when an Artinian ring is local:

Corollary 2.2.23. Let R be an Artinian ring. The following are equivalent:

(i) The ring R is local.

(ii) The quotient R/RadR is a field.

(iii) The only idempotents in R are the trivial ones.

(iv) If R can be decomposed into the product of two rings R1 and R2, then either

R1 = 0 or R2 = 0.

(v) Every non-unit is nilpotent.

Proof. We have already seen that (i) and (v) are equivalent (Lemma 2.2.21). Clearly,

(v) implies (ii). If (ii) holds, then RadR must be a maximal ideal. Since RadR =
√

0

is the intersection of all maximal ideals, R can only have one maximal ideal and is

thus local.

We also have that (v) implies (iii), since if a2 = a, then an = an−1 = · · · = a2 = a

for all n > 0. If a 6= 0, then a must be a unit, but the only idempotent unit is 1.
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If (iv) holds, then by Proposition 2.2.2, (iii) also holds. If (iv) does not hold,

say R = R1 × R2 with R1 6= 0 6= R2, then 1R1 and 1R2 are nontrivial idempotents

in R; therefore (iii) implies (iv).

Assume R is not local. Then since R can be written as the product of local

Artinian rings by Corollary 2.2.20, R must be the product of at least two non-zero

rings. This shows that (iv) implies (i).

2.2.3 Some Facts About Fields

In this subsection we want to present many facts about fields that will be particularly

useful in Chapters 3 and 4.

Let F denote a field.

The Frobenius Morphism and Perfect Fields The Frobenius endomorphism

is a very important endomorphism on rings with prime characteristic. For example

it allows us to characterize finite fields, and it also has an important use in algebraic

geometry. This finally leads us to Hasse’s Theorem, which allows us to find a

boundary for the number of Fq-rational points of an elliptic curve.

Definition 2.2.24. Let R be a ring of prime characteristic p > 0, and let q 6= 1 be

a power of p. Then the q-th power Frobenius morphism is the map R→ R, x 7→ xq.

If q = p, we simply call x 7→ xp the Frobenius morphism.

Remarks 2.2.25.

(a) The q-th power Frobenius morphism is indeed a ring morphism, since
(
i
p

)
= 0 ∈

R for 1 ≤ i < p and since x 7→ xq is the n-fold concatenation of x 7→ xp if q = pn.

(b) If R is reduced, then the Frobenius morphism is injective.

Perfect fields are fields that behave well with respect to testing whether a poly-

nomial is square-free using Euclid’s algorithm. In fact, there is a close connection

between perfect fields, the Frobenius endomorphism and the Galois Theory, which

we will see later.

Definition 2.2.26. A field F is perfect if the following holds: every polynomial f ∈
F[x] \ F is square-free if, and only if, f and ∂f

∂x are coprime.

Remark 2.2.27. For any field F we have that if f ∈ F[x] \ F is not square-free,

then f and ∂f
∂x are not coprime. (See also Lemma 2.1.13.)

Proposition 2.2.28.

(a) [SS88, part II, p. 730, Satz 90.8] If F has characteristic zero, then F is always

perfect.

(b) [SS88, part II, p. 730, Satz 90.9] Let F be of characteristic p > 0. Then F is

perfect if, and only if, the Frobenius morphism F → F, x 7→ xp is surjective.

(c) [SS88, part II, p. 730, Satz 90.7] Algebraically closed fields are perfect.

(d) [SS88, part II, p. 731, Satz 90.12] Finite fields are perfect.
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Separable Field Extensions For field extensions of prime characteristic there is

the notion of separability, which turns out to be important in algebraic geometry,

for example, in the study of endomorphisms of elliptic curves over finite fields.

Definition 2.2.29. [SS88, part II, pp. 726, 734, 741, 747, §§90–91]

(a) A polynomial f ∈ F[x] is called separable if f and ∂f
∂x are coprime.

(b) If K/F is a field extension and x ∈ K, then x is separable over F if x is algebraic

over F and the minimal polynomial of x over F is separable. Otherwise, x is

called inseparable over F.

(c) A field extension K/F is called separable if K is algebraic over F and if every

element x ∈ K is separable over F. Otherwise, K/F is called inseparable.

(d) If K/F is any field extension, then the separated hull of F in K, denoted by

Ksep/F, is the set of all elements x ∈ K that are separable over F.

(e) If K/F is a field extension and F is of characteristic p > 0, then x ∈ K is called

purely inseparable if xp
e ∈ F for some e ∈ N.

(f) A field extension K/F of characteristic p > 0 is called purely inseparable if every

element of K is purely inseparable over F.

(g) A field extension K/F is called normal if K is algebraic over F and if every

minimal polynomial of some x ∈ K over F splits into linear factors over K.

Note that every field extension K/F of characteristic p = 0 is separable.

Proposition 2.2.30.

(a) [SS88, part II, p. 730] A field K is perfect if, and only if, every prime polyno-

mial f ∈ K[x] is separable, i. e. if K/K is separable where K denotes the algebraic

closure of K.

(b) [SS88, part II, pp. 741ff] If K/F is an arbitrary field extension, then Ksep/F/F
is a separable field extension.

(c) [SS88, part II, p. 747, Aufgabe 20(b)] A field extension K/F of characteristic p >

0 is purely inseparable if, and only if, Ksep/F = F.

If one considers morphisms between curves defined over fields of characteris-

tic p > 0, then the notion of being separable or inseparable are important in alge-

braic geometry. We will see this in Chapter 4, and this will be of use in the process

of proving Hasse’s Theorem, which allows us to bound the number of Fq-rational

points on an elliptic curve defined over a finite field Fq. We continue with defining

the separable and inseparable degree of a field extension, similar to the usual degree.

Definition 2.2.31. [SS88, part II, pp. 747f] Let K/F be a field extension.

(a) The separable degree of K/F is defined as

[K : F]sep := [Ksep/F : F].
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(b) The inseparable degree of K/F is defined as

[K : F]insep := [K : Ksep/F].

Remarks 2.2.32. Let K/F be a field extension satisfying [K : F] <∞.

(a) Clearly [K : F]sep · [K : F]insep = [K : F].

(b) The extension K/F is separable if, and only if, [K : F]sep = [K : F], and it is

inseparable if, and only if, [K : F]sep < [K : F].

(c) [SS88, part II, p. 747, Aufgabe 23] The separable degree is multiplicative.

The Galois Theory The Galois Theory draws a connection between subgroups of

the relative automorphism group of a field extension and the lattice of intermediate

fields. This allows the characterization of intermediate fields as fixed fields of certain

subgroups of the group of automorphisms. Therefore, the Galois theory is of great

importance in the theory of curves over finite fields. For example, the proof of Hasse’s

Theorem uses the fact that the algebraic closure of a finite field is a Galois extension

over every finite subfield, and that all Galois groups are cyclic and generated by

the Frobenius morphism. We begin by defining what the Galois group of a field

extension is.

Definition 2.2.33. Let K/F be a field extension. Then the Galois group of K over

F is the group

GK/F := {σ : K → K | σ is a field automorphism, σ|F = idF}.

Let f ∈ K[x1, . . . , xn] be a polynomial and σ ∈ GK/F. Define fσ to be the polynomial

obtained from f by applying σ to all coefficients.

Let K/F be a field extension and G := GK/F its Galois group. The Galois Theory

is built around the interlude between subgroups of G and intermediate fields of K/F.

Definition 2.2.34. Define the lattice of Galois subgroups,

G := GK/F := {H ⊆ G | H subgroup },

and the lattice of intermediate fields,

K := KK/F := {L | F ⊆ L ⊆ K tower of fields }.

For a subgroup H ∈ G , define

LH := {x ∈ K | σ(x) = x for all σ ∈ H},

and for an intermediate field L ∈ K , define

HL := {σ ∈ G | σ(x) = x for all x ∈ L}.

Remark 2.2.35. For each H ∈ G , LH ∈ K , and for each L ∈ K , HL ∈ G .
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Definition 2.2.36. An intermediate field L ∈ K is called Galois closed if LHL
= L.

A field extension K/F is called a Galois extension if it is normal and separable [SS88,

part II, p. 754].

We present one glimpse of the main theorem of the Galois theory we will need:

Proposition 2.2.37. [SS88, part II, p. 755, Satz 92.12] Let K/F be a Galois

extension. Then every L ∈ KK/F is Galois closed.

Finally, we want to characterize in which case the algebraic closure of a field is

Galois over the field itself. Recall that all finite fields are perfect.

Proposition 2.2.38. Let F be a field and K = F be the algebraic closure of F. Then

K/F is a Galois extension if, and only if, F is perfect.

Proof. Obviously K/F is always normal, and by Proposition 2.2.30, it is separable

if, and only if, F is perfect.

Proposition 2.2.39. [SS88, part II, p. 75, Satz 55.7] Let Fq be a finite field with

q elements and Fq its algebraic closure. Then Fq/Fq is Galois and Fq = L〈ϕ〉, where

ϕ : x 7→ xq is the Frobenius endomorphism.

Roots of Polynomials Finally in this subsection we want to examine how poly-

nomials can be parameterized by their roots in any extension of their splitting field.

For this we need some basic information about symmetric polynomials.

Definition 2.2.40. Let F be any field. Define the i-th elementary symmetric poly-

nomial in n indeterminates, denoted by si,n, as

si,n :=
∑

· · ·
∑

1≤j1<···<ji≤n

i∏

k=1

xjk ∈ F[x1, . . . , xn].

Remark 2.2.41. We have the relation

si,n(x1, . . . , xn) = si,n−1(x1, . . . , xn−1) + xnsi−1,n−1(x1, . . . , xn−1),

where si,j = 0 for i < 0 or j < 0.

The following proposition states how the roots of a polynomial are connected to

its coefficients:

Proposition 2.2.42 (Vieta). Let f ∈ F[x] be a polynomial that can be written as

f =
∏n
i=1(x− αi) with αi ∈ F. Then

f =

n∑

i=0

(−1)n−isn−i,n(α1, . . . , αn)x
i.

Proof. This can easily be shown by induction on n and by using the formula from

Remark 2.2.41.
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The following corollary is important. We will need it in Chapter 4 to develop

explicit formulae for adding two points on an elliptic curve.

Corollary 2.2.43. Let f =
∑n

i=0 aix
i ∈ F[x] be a monic polynomial of degree n,

i. e. an = 1, and α1, . . . , αn−1 ∈ F be n− 1 distinct roots of f . Then

f =
n−1∏

i=1

(x− αi) ·
(
x+ an−1 +

n−1∑

i=1

αi

)
.

Proof. Let K be an extension field of F over which f splits into linear factors. Choose

αn ∈ K such that f =
∏n
i=1(x − αi). Then by Proposition 2.2.42 we know that

s1(α1, . . . , αn) = an−1 over K, where f =
∑n

i=0 aix
i. Therefore, we have αn =

−an−1 −
∑n−1

i=1 αi ∈ F.

Remark 2.2.44. If the n − 1 roots for Corollary 2.2.43 are not distinct, but the

multiplicities of the known roots are also known, then the formula can still be used.

2.3 More Tools

In this section we want to present graded rings, homogenous ideals, and Hilbert poly-

nomials, as well as state some results from Dimension Theory, Kähler differentials

and the Theory of Associated Primes.

2.3.1 Graded Rings and Homogenous Ideals

Graded rings are of great importance in projective algebraic geometry as we will see

later. Recall the definition of a graded ring:

Definition 2.3.1. Let S be a ring. Then S is called a (positively) graded ring

if the additive group of S can be written as a direct sum S =
⊕

i≥0 Si, such that

SiSj ⊆ Si+j. The elements of Si are called homogenous of degree i. If not specified

otherwise we mean fi ∈ Si if we write f =
∑

i≥0 fi ∈ S.

If S is a graded ring, we will write Si for the set of the homogenous elements in

S which have degree i. In fact, then we have S =
⊕

i≥0 Si. Moreover, we will write

Sh for the set of all homogenous elements in S.

Let R and S be two graded rings and ϕ : R → S a ring morphism. Then ϕ is a

morphism of graded rings or a graded morphism if ϕ(Ri) ⊆ Si for all i, i. e. if ϕ

preserves degrees.

The following example shows an important example for how graded rings appear

in commutative algebra:

Example 2.3.2. Let R be any ring and S = R[x0, . . . , xn] the ring of polyno-

mials in n + 1 indeterminates over R. Then S is a positively graded ring: for

α = (α0, . . . , αn) ∈ Nn+1 let xα :=
∏n
i=0 x

αi
i and |α| :=

∑n
i=0 αi. Then

S =
⊕

i≥0

Si, where Si =
⊕

α∈Nn+1

|α|=i

Rxα.

When we mention R[x0, . . . , xn] as a graded ring, we will from now on mean this

graduation.
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We next introduce homogenous ideals, which make it possible to pass the grading

to quotients of graded rings.

Definition 2.3.3. Let S =
⊕

i≥0 Si be a graded ring. An ideal a ⊆ S is called

homogenous if for every f =
∑

i≥0 fi ∈ S we have that f ∈ a if, and only if, fi ∈ a

for every i. The ideal S+ :=
⊕

i>0 Si is called the irrelevant ideal of S.

Proposition 2.3.4. Let S be a graded ring.

(1) Obviously 1 ∈ S0. Moreover, S0 is a subring of S.

(2) [Eis95, p. 81, Exercise 2.14] An ideal a ⊆ S is homogenous if, and only if,

it is generated by its homogenous elements. If a is finitely generated, then it

is homogenous if, and only if, there exist homogenous f1, . . . , fn ∈ a such that

a = 〈f1, . . . , fn〉.

(3) An ideal a ⊆ S is homogenous if, and only if, it has a decomposition a =
⊕

i≥0 ai

such that ai ⊆ Si.

(4) [Eis95, pp. 81f, Exercise 2.15 (c)] A homogenous ideal p ⊆ S is prime if, and

only if, for every two homogenous elements f1, f2 ∈ S we have f1f2 ∈ p if, and

only if, f1 ∈ p or f2 ∈ p.

(5) [Har77, p. 9, ch. I] [Eis95, pp. 81f, Exercise 2.15 (a)] The finite product, arbi-

trary intersection and arbitrary sum of homogenous ideals is homogenous. More-

over, the radical of a homogenous ideal is homogenous.

For graded rings, there exists a stronger version of the Hilbert Basis Theorem:

Proposition 2.3.5. [Eis95, p. 47, Exercise 1.4] Let S =
⊕

i≥0 Si be a graded ring.

Then the following are equivalent:

(i) The ring S is Noetherian.

(ii) The ring S0 is Noetherian and the irrelevant ideal S+ is finitely generated.

(iii) The ring S0 is Noetherian and S is a finitely generated S0-algebra.

We will first give some facts about graded morphisms and homogenous ideals.

Then we will elaborate on how factoring a graded ring by a homogenous ideal turns

the quotient into a graded ring.

Remark 2.3.6. Let ϕ : S → T be a graded morphism of graded rings S and T . If

a is a homogenous ideal in T , then b := ϕ−1(a) is a homogenous ideal in S. If a is

prime, then so is b.

Proof. We already know that preimages of ideals are ideals, and preimages of prime

ideals are prime ideals. Let f ∈ ϕ−1(a) and write f =
∑

i≥0 fi with fi ∈ Si. Then∑
i≥0 ϕ(fi) = ϕ(f) ∈ a and, since ϕ preserves degrees, we get ϕ(fi) ∈ a for every i.

Therefore, fi ∈ ϕ−1(a) = b for every i and b is hence homogenous.

Remark 2.3.7. Let S be a graded ring and p be a homogenous prime ideal in S.

Then p0 = p ∩ S0 is a prime ideal in S0.
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Proposition 2.3.8. [SS88, part II, p. 205, §62] Let S be a graded ring and a be a

homogenous ideal. Then S/a is again a graded ring and the natural map q : S → S/a

is a graded morphism.

Since every ring can be seen as a module over itself, it is obvious that modules

over graded rings can have a grading structure themselves.

Definition 2.3.9. Let S be a graded ring and M be an S-module. Then M is called

graded if there is a decomposition M =
⊕

i∈Z
Mi such that for each i, Mi is an

Abelian group and RjMi ⊆ Mi+j for every i and j. We again write Mh for the set

of homogenous elements of M .

If M and N are graded S-modules and ϕ : M → N is a morphism of S-modules,

then ϕ is called a graded morphism of degree n if ϕ(Mi) ⊆ Ni+n.

Remark 2.3.10. If S is a homogenous ring, then any homogenous ideal a a graded

S-module in a natural way, where ai = 0 for i < 0. This includes the case a = S.

Next we define the twist of a graded module. This definition is important as it will

be fundamental in describing all rational points of the scheme-theoretic projective

space over a ring.

Definition 2.3.11. Let S be a graded ring and M =
⊕

i∈Z
Mi be a graded S-module.

For any n ∈ Z define the n-th twist of M as

M(n) :=
⊕

i∈Z

Mi+n.

Remark 2.3.12. The n-th twist of M is, in fact, M when the grading is shifted by

n: we have M(n)i = Mn+i. It is clear that M(n) is again a graded S-module.

If M and N are graded S-modules and ϕ : M → N is a graded morphism of

degree n, then ϕ can be thought of as a graded morphism of degree 0 from M to

N(n) or from M(−n) to N .

Localization behaves well with graded rings and modules if multiplicative systems

that only contain homogenous elements are used:

Definition 2.3.13. Let S be a graded ring, M a graded S-module, and A a multi-

plicative subset of S containing only homogenous elements. Then we define A−1M

as the set of equivalence classes of M ×A modulo the equivalence relation

(m, a) ∼ (m′, a′) :⇐⇒ ∃h ∈ A : h(ma′ −m′a) = 0.

Then A−1M is called the localization with respect to A. We again write m/a for

the equivalence class of (m, a).

Remark 2.3.14. If S is a graded ring, M a graded S-module, and A a multiplica-

tive subset of S as in the definition, then A−1M is a graded S-module, where the

homogenous elements of A−1M are elements of the form m/a such that m ∈ M

is homogenous, having the degree degm/a = degm − deg a. Moreover, A−1S is a

graded ring and A−1M is a graded A−1S-module.

33



Chapter 2. Tools from Commutative Algebra

If p is a homogenous prime ideal in a graded ring R, the multiplicative set R \ p,

in general, contains inhomogenous elements. Therefore Rp would not be a graded

ring.

Definition 2.3.15. If S is a graded ring, M a graded S-module, and p a homogenous

prime ideal in S, then we write M(p) for the elements of degree zero in the localization

of M at A, where A is the set of homogenous elements in the complement of p. If

f ∈ S+, we write S(f) for the homogenous elements of degree zero in the localization

of M at {fn | n ∈ N}.

Remarks 2.3.16. Let S be a graded ring, M be a graded S-module, and p be a

homogenous prime ideal in S.

(1) Then M(p) is an S0-module. It consists of all m/a such that m is homogenous

of degree deg a.

(2) Again, M(p) is a S(p)-module.

(3) The ring S(p) is a local ring with maximal ideal m = { gh ∈ S(p) | g ∈ p, h 6∈ p}.

(The proofs are the same as in Remark 2.2.8.)

We want to close this subsection with the following proposition, which shows

that a certain graded ring is flat over its degree zero component. This will later

allow us to build curves over rings.

Proposition 2.3.17. Let R be a ring, S = R[x0, . . . , xn], and let f ∈ S be homoge-

nous of degree d > 0 and a non-zero-divisor in S. Let Ŝ = S/ 〈f〉 and x̂i be the

image of xi in Ŝ. Then

Ŝ(x̂i)
∼= R[x0, . . . , xi−1, xi+1, . . . , xn]/ 〈f |xi=1〉 =: Ŝ(i)

is flat over R.

Proof. Recall that Ŝ(x̂i) are quotients in the form g
xk

i
, where g ∈ Ŝ is homogenous of

degree k. Clearly, xi 7→ 1 gives a ring isomorphism from Ŝ(x̂i) to Ŝ(i).

The only thing left to show before we can apply Proposition 2.1.34 to complete

the proof is that f̂i := f |xi=1 is a non-zero-divisor in the ring

Ŝ[i] := R[x0, . . . , xi−1, xi+1, . . . , xn] ∼= S(xi),

where the isomorphism again maps xi 7→ 1. But by this isomorphism, if f̂i is a zero-

divisor, then f must be a zero-divisor contrary to the assumption, since g/xki = 0

in S(xi) if, and only if, g = 0.

2.3.2 Hilbert Polynomials

In projective algebraic geometry over fields the Hilbert polynomial plays an impor-

tant role. We will see later that it can be used to define the arithmetic genus of a

projective variety and to define the degree of a projective variety, which will allow

the description of the intersection of a projective variety with a hyperplane.
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Definition 2.3.18. [Eis95, p. 42]

(a) Let f ∈ Q[t] be a polynomial. Then f is said to be a numerical polynomial if

there exists some t0 ∈ Z such that f(t) ∈ Z for all t ∈ Z, t ≥ t0.

(b) Let S = F[x0, . . . , xn] be seen as a graded ring (see Example 2.3.2) and M be a

finitely generated graded S-module. The Hilbert function of M is defined as

HM : Z → Z, s 7→ dimFMs.

Theorem 2.3.19 (Hilbert). [Eis95, p. 42, Theorem 1.11] If M is a finitely gen-

erated graded S-module where S = F[x0, . . . , xn] for a field F, then there exists a

unique numerical polynomial f of degree at most n such that there is an s0 ∈ N
satisfying f(s) = HM (s) for all s ∈ Z, s ≥ s0.

Definition 2.3.20. The polynomial in Theorem 2.3.19 is called the Hilbert poly-

nomial of M .

2.3.3 Dimension Theory

If a ring contains a field, one can consider the vector space dimension of the ring

over this field. Unfortunately, in most cases this dimension is infinite. Therefore,

we need other notions of dimensions for rings containing fields, but also for general

rings. For field extensions there is the transcendence degree, and for arbitrary rings,

the Krull dimension. We first define the latter, which turns out to be the right

concept for dimension in algebraic geometry.

Definition 2.3.21. Let R be a ring.

(a) Define the height ht p of a prime ideal p of R to be the supremum of all lengths

of properly ascending chains of prime ideals ending at p, where the length of a

chain p0 $ · · · $ pn = p is n.

(b) The (Krull) dimension dimR is the supremum of the heights of all prime ideals

in R.

(c) If R is a graded ring, define dimhR to be the supremum of all lengths of chains

of homogenous prime ideals that do not contain the irrelevant ideal.

Remarks 2.3.22.

(a) Note that from the definition it does not follow that a finite dimensional ring is

Noetherian, nor that a Noetherian ring is finite dimensional.

(b) If R is Noetherian, then dimR = 0 if, and only if, R is Artinian. This follows

directly from Proposition 2.2.19.

Next we define the transcendence degree of a field extension.
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Definition 2.3.23. Let K/F be a field extension.

(a) A set of elements X ⊆ K is algebraically independent over F if for any set of

distinct elements x1, . . . , xn ∈ X and any polynomial f ∈ F[t1, . . . , tn] we have

that f(x1, . . . , xn) = 0 implies f = 0.

(b) A transcendence basis of K/F is a set of elements X ⊆ K that is algebraically

independent over F, satisfying that every element of K is algebraic over F(X).

(c) The transcendence degree of K/F, denoted by tr. deg.F K, is the cardinality of

any transcendence basis of K/F.

Remarks 2.3.24.

(a) See [Eis95, pp. 561f] for a proof that the transcendence degree of a field extension

is well-defined, i. e. transcendence bases exist and have the same length.

(b) If R is a domain that is a finitely generated F-algebra, and K the field of fractions

of R, then by [Har77, p. 6, ch. I, Theorem 1.8A] we have dimR = tr. deg.F K.

Regular Rings We want to present the class of regular rings. Regularity turns

out to be important for characterizing smoothness in algebraic geometry.

Definition 2.3.25. Let R be a ring.

(a) If R is local with maximal ideal m and if dimR/m m/m2 = dimR, then we say

that R is a regular local ring.

(b) If Rp is a regular local ring for every prime p of R, then R is said to be regular.

We wil now present two results on regular rings we will need later.

Proposition 2.3.26 (Auslander-Buchsbaum). [Mat80, p. 142, Theorem 48] Let

R be a regular local ring. Then R is a unique factorization domain.

Corollary 2.3.27. A regular ring is reduced.

Proof. Let R be regular and x ∈ R such that xn = 0. Then xn = 0 in all local-

izations Rp, where p is a prime of R. But the rings Rp are regular local rings and,

therefore, reduced by Proposition 2.3.26. Therefore, x = 0 ∈ Rp for every p. By

Lemma 2.2.9 we get x = 0 in R.

2.3.4 Kähler Differentials

In differential geometry one can characterize smoothness at a point by examining

the vector space of differential forms at this point; they form the tangent space.

For varieties and schemes, an algebraic analogon can be used. In this subsection we

define the module of relative differentials for an R-algebra. How this is connected

to Kähler differentials on schemes will be noted in Remark 2.3.4 (b). We begin by

investigating what a derivation is.
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Definition 2.3.28. Let R be a ring, S an R-algebra and M an S-module. A map

d : S →M is called a derivation if d(fg) = d(f)g + fd(g) for all f, g ∈ S. If d is a

derivation and a morphism of R-modules, then d is called R-linear. The set of all

R-linear derivations d : S →M is denoted by DerR(S,M).

Remark 2.3.29. The set DerR(S,M) is in a natural way an S-module, where

d : S →M multiplied by s ∈ S is sd : f 7→ s · d(f).

We now show the existence and uniqueness of the module of relative differentials

and show how it can be constructed:

Proposition 2.3.30. [Mat80, pp. 181ff] Let S be an R-algebra. There exists an S-

module ΩS/R and an R-linear derivation d : S → ΩS/R with the following universal

property:

If M is any S-module and d′ : S → M is any R-linear derivation, then there

exists a unique S-module morphism ϕ : ΩS/R →M such that d′ = ϕ ◦ d.
The module ΩS/R is unique up to isomorphism.

Definition 2.3.31. Let S be an R-algebra. The module of relative differential

forms or module of Kähler differentials of S over R is the S-module ΩS/R from the

previous proposition.

Remark 2.3.32. There are two methods that can be used to construct ΩS/R for

an R-algebra S:

(1) [Eis95, p. 386] Take the free S-module generated by symbols in the form d(x) :=

dx for x ∈ S, modulo the sub-S-module generated by

d(xy) − xd(y) − yd(x), d(λx+ µy) − λd(x) − µd(y),

where x, y ∈ S and λ, µ ∈ R.

(2) [Mat80, p. 182] Let ϕ : S⊗R S → S be the “diagonal” morphism defined by

x⊗R y 7→ xy, and let a = kerϕ. By the homomorphism S → S⊗R S, s 7→
s⊗R 1, a becomes an S-module. Define d : S → a/a2 by s 7→ 1⊗ s − s⊗ 1

mod a2. Then a/a2, together with the universal derivation d, is the module of

relative differential forms.

Before concluding this subsection we want to present two results on how the

relative module of differentials behaves with respect to tensoring and localization.

Proposition 2.3.33. [Har77, p. 173, Proposition 8.2A] Let S and T be R-algebras

and U a multiplicative subset of S.

(a) We have that ΩS/R⊗R T ∼= ΩST /T , where ST = S⊗R T .

(b) We have that ΩU−1S/R
∼= U−1ΩS/R.
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2.3.5 Associated Primes

In this subsection we will introduce associated primes of a module. As they can be

used to describe the zero-divisors of a ring, we will use them to state a result about

zero-divisors in special algebras over Artinian rings.

Definition 2.3.34. Let R be a ring, M be an R-module and N,P be sub-R-modules

of M . Let

(P : N) := (P :R N) := {r ∈ R | rN ⊆ P}.

If a is an ideal in R, then we write

(P :M a) := {m ∈M | am ⊆ P}.

An element r ∈ R is called a zero-divisor on M if (0 :M r) := (0 :M 〈r〉) 6= 0.

Otherwise it is a non-zero-divisor on M .

Remark 2.3.35. Clearly, (P :R N) is an ideal in R and (P :M a) a sub-R-module

of M . Moreover, r ∈ R is a zero-divisor on R (by Definition 2.3.34) if, and only if,

r is a zero-divisor in R (by the usual definition).

Definition 2.3.36. Let R be a ring and M an R-module. Let SpecR denote the

set of prime ideals of R. The associated primes of M are the prime ideals of R in

the set

AssR(M) := {p ∈ SpecR | ∃m ∈M : (0 :R 〈m〉R) = p}.

The following proposition shows that for Noetherian rings and finitely generated

modules, associated primes do exist. It also gives some more properties that we will

need.

Proposition 2.3.37. [Eis95, pp. 89f] Let R be a Noetherian ring and M 6= 0 be a

finitely generated R-module.

(a) The set AssR(M) is finite and non-empty, and every p ∈ AssR(M) contains

(0 :R M). If p ∈ SpecR is a prime minimal among all primes containing

(0 :R M), then p ∈ AssR(M).

(b) Let S be the set of zero-divisors on M . Then S =
⋃{p | p ∈ AssR(M)}.

(c) If S ⊆ R is a multiplicative subset, then

AssS−1R(S−1M) = {pS−1R | p ∈ AssR(M), p ∩ S = ∅}.

We now want to present a result that reduces the problem of enumerating asso-

ciated primes to do this in quotients of the ring.

Definition 2.3.38. Let ϕ : R → S be a map of rings. We will denote the induced

map SpecS → SpecR, p 7→ ϕ−1(p) by ϕ∗.
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Proposition 2.3.39. [Mat80, p. 58, Corollary] Let ϕ : R → S be a flat morphism

of Noetherian rings. Then

AssS(S) =
⋃

{AssS(S/pS) | p ∈ AssR(R)}

and

ϕ∗(AssS(S)) = {p ∈ AssR(R) | pS 6= S}.

With the help of this proposition we can get the following result. which will be

needed to obtain a result on the sheaf of meromorphic functions of a smooth curve

over a local Artinian ring.

Proposition 2.3.40. Let R be a local Artinian ring with maximal ideal m and S

be a flat Noetherian R-algebra containing R. Assume that S has a minimal prime

ideal p and that mS = p. Then f ∈ S is a zero-divisor if, and only if, f is nilpotent.

Moreover, the set of zero-divisors is exactly p.

Proof. The idea is from [Bro05]. Clearly, every nilpotent element is a zero-divisor.

Since the zero-divisors of S are exactly the elements in
⋃{q | q ∈ AssS(S)} by

Proposition 2.3.37 (b), and the nilpotent elements of S are exactly the elements of√
0 =

⋂{q | q ∈ SpecS} = p, we have to show that AssS(S) = {p}. However,

AssS(S) =
⋃

{AssS(S/qS) | q ∈ AssR(R)} = AssS(S/mS) = AssS(S/p)

according to Proposition 2.3.39, since AssR(R) ⊆ {m} and AssR(R) 6= ∅ by Propo-

sition 2.3.37 (a). Since 0 = (0 :S S) ⊆ p, we have p ∈ AssS(S/p) by Proposi-

tion 2.3.37 (a). But S/p is a domain and, hence, if q ∈ AssS(S/p) annihilates any

non-zero element of S/p, it must be that q ⊆ p.

2.4 Primitive Elements and Projective Modules

In this section we want to discuss a condition needed for defining an arithmetic

addition law on elliptic curves over special rings. We will give a characterization of

this condition using the Picard group of the ring and show several examples of rings

satisfying this condition. This class of rings will include all Artinian and, therefore,

all finite rings.

2.4.1 Primitive Elements

We will now define the notion of being primitive for a finite collection of elements

of a ring. This property is needed to formulate the condition.

Definition 2.4.1. Let R be a ring. Then a1, . . . , an ∈ R are called primitive if

〈a1, . . . , an〉R = R.

Remarks 2.4.2.

(a) The elements a1, . . . , an ∈ R are primitive if, and only if, there exist b1, . . . , bn ∈
R such that

∑
aibi = 1. Because of this property the term unimodular is

sometimes used in the literature instead of primitive.
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(b) If one of the ai’s is a unit, then a1, . . . , an are primitive. This implies that if R

is a field, a1, . . . , an are not primitive if, and only if, all ai’s are zero.

(c) The notion of being primitive will be applied to vectors and matrices with

coefficients in R in the following sense: we say a vector (ai)i ∈ Rn, respec-

tively a matrix (bij)ij ∈ Rn×m is primitive over R, if a1, . . . , an, respectively

b11, . . . , b1m, . . . , bn1, . . . , bnm are primitive over R.

We will now characterize the property of being primitive.

Lemma 2.4.3. Let a1, . . . , an ∈ R. The following are equivalent:

(i) The elements a1, . . . , an are primitive.

(ii) For every maximal ideal m in R, at least one of the ai’s is not contained in m.

(iii) For every prime ideal p, the images of the ai’s under the natural map R 7→ Rp

are primitive in Rp.

(iv) For every maximal ideal m, the images of the ai’s under the natural map R 7→
Rm are primitive in Rm.

(v) For every maximal ideal m, the images of the ai’s in R/m are not all zero.

This shows that being primitive is a local property. Note that in a local ring,

a1, . . . , an are primitive if, and only if, at least one of them is a unit.

Proof. If (i) holds, then 1 =
∑
riai with ri ∈ R. If m is an ideal containing all the

ai’s, then 1 ∈ m. Thus, m cannot be maximal, and (ii) holds.

If (i) does not hold, 〈a1, . . . , an〉 $ R. Then there exists a maximal ideal m

containing a1, . . . , an. So (ii) does not hold.

If (i) holds, then 1 =
∑
riai with ri ∈ R. Since the natural map maps 1 in R

onto 1 in Rp, the images of the ai’s are primitive in Rp. Therefore, (iii) holds.

It is clear that (iii) implies (iv).

If (ii) does not hold, the ai’s are contained in a maximal (and thus prime) ideal m.

Since the image of m under the natural map is contained in the maximal ideal of

Rm, the images of the ai’s are also contained in it (see Remarks 2.2.8). Hence, by

(i) ⇔ (ii), they cannot be primitive in Rm and (iv) does not hold.

We conclude by noting that (ii) and (v) are equivalent.

Before continuing we will show that for polynomials over Artinian rings the

notion of its coefficients being primitive is equivalent to being a zero-divisor.

Definition 2.4.4. Let R be a ring and f ∈ R[x1, . . . , xn] be a polynomial. Then f

is primitive over R if the set of coefficients of f is primitive over R.

Proposition 2.4.5. Let R be an Artinian ring and S = R[x1, . . . , xn]. Then f ∈ S

is a non-zero-divisor if, and only if, f is primitive. Moreover, if R is local, then f

is a zero-divisor if, and only if, it is nilpotent, which is the case if, and only if, all

coefficients are contained in the maximal ideal of R.
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Proof. First assume R is local with maximal ideal m. Now R[x1, . . . , xn]/ 〈m〉 ∼=
(R/m)[x1, . . . , xn] and, therefore, 〈m〉 is prime. Since every element of m is nilpo-

tent, so is every element of 〈m〉 and, therefore,
√

0 = 〈m〉 in R[x1, . . . , xn]. By

Corollary 2.1.31, R[x1, . . . , xn] is flat over R and, hence, we can conclude the local

case by applying Proposition 2.3.40.

Now let R be an arbitrary Artinian ring. Write R =
⊕m

i=1Ri, where Ri are local

Artinian rings with maximal ideals mi, and let Si = Ri[x1, . . . , xn], m′
i = 〈mi〉Si

. Let

f =
∑m

i=1 fi, where fi ∈ Si. Assume f is primitive and fg = 0 with g =
∑m

i=1 gi,

gi ∈ Si. Then fg =
∑m

i=1 figi and, thus, figi = 0 for all i. But since f is primitive,

fi is not contained in m′
i. By the first part of the proof, then gi = 0 for all i and,

hence, g = 0. Now let f not be primitive; therefore fi ∈ m′
i for some i. If fi = 0,

choose g = 1Si , and otherwise let g ∈ m′
i \ {0} such that fig = 0. But then fg = 0,

while g 6= 0.

We will now formulate the condition needed for rings to define an arithmetic

group law:

(∗) For all n,m ∈ N>0, and every matrix (aij)ij ∈ Rn×m primitive over R such

that all two-by-two minors vanish, i. e. aijak` − ai`akj = 0 for all i, j, k, ` with

1 ≤ i < k ≤ n and 1 ≤ j < ` ≤ m, there exists an R-linear combination of the

columns that is primitive over R.

We will see in Section 4.3.3 why this condition is needed. Now we will continue

to characterize this condition and we will also specify an algorithm that effectively

computes the linear combination over finite rings.

2.4.2 Projective Modules

To define the Picard group of a ring we need to know what a projective R-module of

rank one is. We also need several properties and characterizations of such modules.

Definition 2.4.6. Let R be a ring and P an R-module. Then P is called projective

if every exact sequence M
f→ P → 0 of R-modules splits at P , i. e. if there exists an

R-module homomorphism g : P →M such that f ◦ g = idP .

Remark 2.4.7. Let A
f→ B → 0 be an exact sequence that splits at B by the

morphism g : B → A. Then A ∼= B ⊕ ker f :

Consider the R-linear map h : A→ B ⊕ ker f , x 7→ (f(x), x− g(f(x))). Since it

maps ker f onto ker f , and since f is surjective, h itself is surjective. If h(x) = 0,

then h ∈ ker f and, hence, x = x− g(f(x)) = 0. Hence h is injective.

Proposition 2.4.8. Let P be a finitely generated R-module. The following are

equivalent:

(i) The module P is projective.

(ii) The module P is a direct summand of a free module of finite rank.

(iii) There exists some n ∈ N and an idempotent e ∈ End(Rn) such that P ∼= eRn.
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(iv) For all R-modules M , N and homomorphisms h : P → N and f : M → N ,

where imh ⊆ im f , there exists a lift of h with respect to f , i. e. there exists an

homomorphism h̃ : P →M such that h = f ◦ h̃.

P
∃h̃

~~|
|

|
|

h
��

M
f

// N

(v) If M
f→ N → 0 is exact, then the map

Hom(P, f) : HomR(P,M) → HomR(P,N), ϕ 7→ f ◦ ϕ

is surjective.

Proof. Assume that (i) holds. Choose some n ∈ N such that there exists a surjec-

tive f : Rn → P . This is possible since P is finitely generated. Then by assumption,

the exact sequence Rn
f→ P → 0 splits at P and so we get Rn ∼= ker f ⊕ P . Thus

(ii) holds.

Assume that (ii) holds. Let Rn = P ⊕Q and define e : Rn → Rn by p+ q 7→ p,

where p ∈ P and q ∈ Q. Then e ∈ End(Rn), e(Rn) = P and e2 = e, so (iii) holds.

Assume that (iii) holds. Let P = eRn and define Q := (1− e)Rn. We show that

ϕ : Rm → P ⊕Q, x 7→ (ex, (1 − e)x)

is an isomorphism: it is clear that it is a homomorphism and, since ϕ(x) = 0 implies

ex = 0 = x− ex, i. e. x = 0, it is injective. Given (ex, (1 − e)y) ∈ P ⊕Q, it is

ϕ(ex+ (1 − e)y) = (e2x+ e(1 − e)y, (1 − e)ex+ (1 − e)2y)

= (ex, (1 − e)y).

So (ii) holds.

Assume that (ii) holds and let M , N , h and f be as in the assumptions for (iv).

Let ϕ : Rn = P ⊕ Q → P be the projection onto P and ψ : P → Rn = P ⊕ Q

the injection into P ⊕ Q, so ϕ ◦ ψ = idP . This show that it is enough to prove

that Rn fulfills (iv), since in this case there exists a lift g : Rn →M of the mapping

h◦ϕ : Rn → N with respect to f : M → N , i. e. f◦g = h◦ϕ and, by setting h̃ := g◦ψ,

we get

f ◦ h̃ = (f ◦ g) ◦ ψ = (h ◦ ϕ) ◦ ψ
= h ◦ (ϕ ◦ ψ) = h ◦ idP = h,

so that (iv) holds.

Rn
ϕ

))

∃g
���
�
� P

ψ

jj

h
��

M
f

// N

Hence, assume we have modules N , M and homomorphisms h : Rn → N and

f : M → N such that imh ⊆ im f . Let e1, . . . , en be a basis of Rn. Since imh ⊆ im f ,
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choose xi ∈M such that f(xi) = h(ei) and define a homomorphism h̃ : Rn →M by

mapping ei onto xi. Then (f ◦ h̃)(ei) = f(xi) = h(ei) for all i, so f ◦ h̃ = h. This

completes the proof of (ii) ⇒ (iv).

Assume that (iv) holds. Let M
f→ P → 0 be exact and choose h = idP and

N = P . Then by (iv), there exists a homomorphism h̃ : P → M such that f ◦ h̃ =

h = idP , which means that the sequence splits at P and, therefore, (i) holds.

To see that (iv) and (v) are equivalent, note that (v) means that for every h ∈
HomR(P,N) there is an h̃ ∈ HomR(P,M) such that h = f ◦ h̃ and, further, that (iv)

can be reformulated by replacing N by im f such that the condition imh ⊆ im f is

no longer needed.

Corollary 2.4.9. Every free module of finite rank is projective.

Proof. This directly follows from (ii) ⇒ (i).

Example 2.4.10. Not every projective module is free: let R = Z ⊕ Z and P = Z,

where the action is given by R× P → P , ((r, r′),m) 7→ rm.

But there are cases where the converse holds true. Before we show this, we need

the following result:

Proposition 2.4.11. Let R be a ring and P be a finitely generated projective

R-module. Then there exists an n ∈ N and an A = (aij)ij ∈ Rn×n such that

P ∼= cokerA, i. e. the following sequence is exact:

Rn
x7→Ax // Rn // P // 0.

Furthermore, A is idempotent, i. e. A2 = A.

Thus, every finitely generated projective R-module P is of finite presentation,

which means that it sits in an exact sequence F1 → F2 → P → 0, where F1 and F2

are free R-modules of finite rank.

Proof. By Proposition 2.4.8, we can write P ∼= eRn for some n ∈ N and some

idempotent e ∈ End(Rn). Let f := 1 − e ∈ End(Rn). Then the sequence

Rn
f // Rn

e // Rn

is exact. Let e1, . . . , en be a basis of Rn, and define the aij ’s by the equations∑
j aijej = f(ei), i = 1, . . . , n. Then the endomorphism f is represented by the

matrix A = (aij)ij in the sense that if x =
∑

i λiei and f(x) =
∑

i µiei, then

(µi)i = (aij)ij(λi)i. Thus, the sequence given in the proposition is exact. That A is

idempotent follows directly from the fact that f = 1 − e is idempotent.

Proposition 2.4.12. [Eis95, pp. 136f, Exercise 4.11 (a)] Let R be a local ring and

P a finitely generated projective module over R. Then P is free.

Corollary 2.4.13. Let R be a ring and P a finitely generated projective module. If

p is a prime ideal of R, then the localization Pp of P is free as an Rp-module, i. e.

there exists an n ∈ N such that Rnp
∼= Pp.
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Proof. Since Rp is local, it is enough to show that Pp is projective. Then we can

finish the proof by applying Proposition 2.4.12. By Proposition 2.4.8 we can write

Rn = P ⊕Q for some n ∈ N and some R-module Q. However, since Rnp = Pp ⊕Qp,

by Proposition 2.4.8, Pp is a finitely generated projective Rp-module.

This implies that for every projective finitely generated R-module P we get a

map

ϕ : SpecR→ N, p 7→ rankRp Pp.

Definition 2.4.14. If R is a ring, P is a finitely generated projective R-module,

and n ∈ N, then P is called projective of rank n if, for every prime ideal p in R, we

have rankRp Pp = n.

Definition 2.4.15. For a ring R let PicR denote the Picard group of R, which is

defined to be the set of isomorphism classes of projective R-modules of rank one.

Note that we do not know (yet) that PicR is a group. We need one further

characterization of a module being projective:

Proposition 2.4.16. [Eis95, pp. 136f, Exercise 4.11 (b)] Let R be a ring and P a

finitely generated R-module. Then P is projective if, and only if, for every maximal

ideal m of R, Pm is a projective (and hence free, by Proposition 2.4.12) Rm-module.

Thus, being projective is also a local property.

2.4.3 Projective Modules and Matrices

We want to characterize the matrix condition (∗) from page 41 by projective R-

modules of rank one. For that, we will first show that any finitely generated projec-

tive R-module of rank one can be represented by a primitive matrix A ∈ Rn×m for

which every two-by-two minor vanishes.

Lemma 2.4.17. Let P be a finitely generated projective R-module of rank one.

Then P ∼= ARm for a matrix A ∈ Rn×m, which is primitive over R and for which

every two-by-two minor vanishes.

Proof. By Proposition 2.4.8 all finitely generated projective R-modules are up to

isomorphism of the form P = eRn, where n ∈ N>0 and e ∈ End(Rn) is idempotent.

Let A = (aij)ij ∈ Rn×n be the matrix representation for e ∈ End(Rn). Hence,

P = ARn. Let p be a prime ideal of R.

Since Pp is free of rank one, we have
∑
A•i,pRp = Pp = Rpv for some v ∈ Rnp .

Thus, for every i we get some λi,p ∈ Rp such that A•i,p = λi,pv. Since Ap is

idempotent and v ∈ ApR
n
p , we have Apv = v (see Remark 2.2.1).

Let e1, . . . , en be the canonical basis of Rnp , and let λi ∈ Rp such that λiv = Apei.

Then since (∑

i

λivi

)
v =

∑

i

λivvi =
∑

i

Apeivi = Apv = v,

we must have
∑
λivi = 1 as the map r 7→ rv is injective (because Rpv is free). Since

v =
∑

i µiA•i,p for some µi ∈ Rp, we have

1 =
∑

j

λjvj =
∑

j

λj
∑

i

µiaji,p
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and, therefore, Ap is primitive. Since this is true for every prime ideal p, by

Lemma 2.4.3 we get that A is primitive.

We now show that every two-by-two minor of A vanishes: This is clearly true

for Ap, since A•i,p = λi,pv, so aji,p = λi,pvj and, thus,

aji,pa`k,p − a`i,pajk,p = λi,pvjλk,pv` − λi,pv`λk,pvj = 0.

Since this is true for every localization Ap, it is also true for A itself by Corol-

lary 2.2.10.

Lemma 2.4.18. Let A ∈ Rn×m be a matrix that is primitive over R such that every

two-by-two minor vanishes. Then P = ARm is a projective R-module of rank one.

Proof. Assume A = (aij)ij ∈ Rn×m is primitive and every two-by-two minor of A

vanishes. We will show that P = ARm ⊆ Rn is a projective R-module of rank one.

We have that P is generated as an R-module by the columns of A, i. e. P =
∑

iRA•i.

By using the vanishing of all two-by-two minors, we get
(∑

i

µiaik

)
A•` =

(∑

i

µiai`

)
A•k

for all k, ` ∈ {1, . . . ,m} and all (µi)i ∈ Rn.

By Proposition 2.4.16 and Lemma 2.4.3, to conclude this proof we have to show

that Pp is free of rank one for every prime ideal p. Hence, for the rest of this proof,

assume that R is local.

A collection of elements is primitive over a local ring if, and only if, one of them

is a unit. Thus, there exist some î and k such that aîk ∈ R∗. Let µî = a−1
îk

and

µj = 0 for j 6= î. Then
∑

i µiaik = 1 and, therefore, we get

A•` = a−1
îk
aî`A•k

for all `. However, this means that v := A•k generates ARm, i. e. ARm = Rv. Since

aîk is a unit, Rv is free: Indeed
∑

i λivi = 1 for some λi, and let

ϕ : Rn → R, (wi)i 7→
∑

i

λiwi.

One can easily see that ϕ(rv) = r for every r ∈ R, and thus Rv is isomorphic to

R.

We have shown the following proposition:

Proposition 2.4.19. Let P be a finitely generated R-module. Then P is projective

of rank one if, and only if, there exists a matrix A ∈ Rn×m that is primitive over R

and for which every two-by-two minor vanishes such that P ∼= ARm.

As a next step we characterize when a projective R-module of rank one is free

by using this matrix representation.

Lemma 2.4.20. Let P = ARm ⊆ Rn be a projective R-module of rank one, where

A ∈ Rn×m is a matrix that is primitive over R such that every two-by-two minor

of A vanishes. If there exists an R-linear combination of the columns of A that is

primitive over R, then P is free.
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Proof. Let A = (aij)ij ∈ Rn×m be as in the assumptions. Let λi ∈ R be such that

v :=
∑

i λiA•i is primitive over R. We will show that R ∼= P by the isomorphism r 7→
rv. Assuming that this map is surjective, the inverse is given by ψ|Rv, where

ψ : Rn → R, (wi)i 7→
∑

µiwi

for some µi’s satisfying
∑
µivi = 1.

To complete the proof we will now show that ARm is contained in Rv. Fix one

i, and let 1 ≤ k, ` ≤ n. Then akiv` − a`ivk = 0 since all two-by-two minors of A

vanish, and v is a linear combination of the columns of A. However this gives

(∑

i

µiai`

)
vj =

∑

i

µiai`vj =
∑

i

µiviaj` =
(∑

i

µivi

)
aj` = aj`

and, hence, A•` = α`v ∈ Rv for α` :=
∑

i µiai`.

Lemma 2.4.21. Let P = ARm ⊆ Rn be a projective R-module of rank one, where

A ∈ Rn×m is a matrix that is primitive over R such that every two-by-two minor of

A vanishes. If P is free, then there exists an R-linear combination of the columns of

A that is primitive over R. Moreover, the primitive R-linear combination is unique

up to multiplication by units.

Proof. Let A = (aij)ij ∈ Rn×m be as in the assumption. Since P is free, there exists

a v ∈ Rn such that ARm = P = Rv.

Let p be a prime ideal of R. Since Ap is primitive, one of its columns contains

a unit and, therefore, A•k,p is primitive for one k. In the proof of Lemma 2.4.18,

we saw that Pp = RpA•k,p. Further, Rpvp = Pp. Hence, there are α, β ∈ R such

that vp = αA•k,p and A•k,p = βvp. This implies A•k,p = βαA•k,p and, since one

component of A•k,p is a unit, it follows that βα = 1. Therefore, one component of

vp is also a unit, and vp is primitive. By Lemma 2.4.3 v is primitive.

Now, since ARm = P = Rv, there exist λ1, . . . , λm such that v =
∑

i λiA•i and,

thus, we have a linear combination of the columns of A that is primitive.

Assume ṽ is another linear combination of the columns of A, which is primitive.

Then ṽ = αv for some α ∈ R. If α is not a unit, then every component of ṽ is

contained in the ideal Rα $ R, contradicting that ṽ is primitive.

We have shown the following proposition:

Proposition 2.4.22. Let P = ARm ⊆ Rn be a projective R-module of rank one,

where A ∈ Rn×m is a matrix that is primitive over R such that every two-by-two

minors of A vanish. Then P is free if, and only if, there exists an R-linear combi-

nation of the columns of A, which is primitive over R. If such a linear combination

exists, it is unique up to multiplication by units of R.

As a result of the two last propositions we get the following corollary which

characterizes the matrix condition (∗) from the end of Section 2.4.1 (on page 41):

Corollary 2.4.23. Let R be a ring. Then the following are equivalent:

(i) Every projective R-module of rank one is free, i. e. PicR = 0.
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(ii) For every primitive matrix A ∈ Rn×m, such that every two-by-two minor van-

ishes, there exists an R-linear combination of the columns of A that is primi-

tive. (∗)

In this situation the linear combination in (ii) is unique up to multiplication by units.

2.4.4 Rings Satisfying Pic R = 0

In this subsection we want to give several examples of rings R satisfying PicR = 0.

First, we will describe how to calculate the primitive linear combination of the

columns of a given primitive matrix over a finite ring R satisfying (∗). In particular,

this proves that every finite ring R satisfies PicR = 0. Following [Len86], we begin

with a lemma:

Lemma 2.4.24. [Len86, p. 107, Lemma] Let R be a finite ring and choose t ∈ N
such that 2t+1 > |R|.

(a) For every c ∈ R there exists an x ∈ R such that ct+1x = ct.

(b) An element c ∈ R is nilpotent if, and only if, ct = 0.

Proof.

(a) Consider the chain of ideals

Rct+1 ⊆ Rct ⊆ · · · ⊆ Rc ⊆ R.

If Rci+1 $ Rci for i = 0, . . . , t, by Lagrange we get

|R| ≥ 2 |Rc| ≥ 2 · 2
∣∣Rc2

∣∣ ≥ · · · ≥ 2t+1
∣∣Rct+1

∣∣ ≥ 2t+1 > |R| ,

a contradiction. Hence, we have Rci = Rci+1 for some i ∈ {0, . . . , t} and,

therefore, ci+1 = xci for some x ∈ R. By multiplying with ct−i we complete the

proof of (a).

(b) Note that (a) implies cux = cu−1 for some x ∈ R if u > t. So cu = 0 implies

cu−1 = 0 if u > t. If c is nilpotent and i ∈ N>0 is the smallest exponent such

that ci = 0, it must be i ≤ t, therefore ct = 0.

Let A = (aij)ij ∈ Rn×m be a matrix that is primitive over R.

The algorithm works by recursion on the size of the ring. For the zero ring 0,

any collection of elements is primitive, so any column of the matrix can be taken.

Otherwise, the matrix must contain an element that is not nilpotent: if every entry is

nilpotent, all elements lie in the ideal RadR $ R, so the matrix cannot be primitive

over R. Let c be a non-nilpotent entry.

Using the lemma, we can find an x ∈ R such that ct+1x = ct. This implies

ct = ct+1x = ctcx = (ct+1x)cx = · · · = c2txt.

By letting e := ctxt, we have e2 = c2tx2t = xtct = e, so e is idempotent. Since c 6= 0,

we have e 6= 0, as otherwise we would have 0 = ect = ct.

If e = 1, then c is a unit and the column containing c is primitive over R. If

e 6= 1, then e is a non-trivial idempotent, so R = Re × R(1 − e), where Re and
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R(1 − e) are non-zero finite rings (see Proposition 2.2.2). Let πe : R → Re and

π1−e : R→ R(1 − e) be the canonical surjections.

Now clearly πe(A) is a matrix primitive over Re, hence by recursion, we find an

Re-linear combination of the columns of πe(A), which is primitive over Re. The same

can be done for π1−e(A). Therefore, we get an R(1 − e)-linear combination of the

columns of π1−e(A), which is primitive over R(1−e). These two linear combinations

can be combined to form one in R by adding them together. The sum is primitive

over R because the ideals in R are products of ideals in Re and R(1 − e).

For a first running-time analysis, note that πe(c) will be a unit, since

πe(c)
tπe(x)

t = πe(1) = 1Re,

and π1−e(c) will be nilpotent, since

π1−e(c)
t = π1−e(c

t) = (1 − e)ct = ct − c2txt = 0.

This implies that the recursion is only needed for π1−e(A). Thus, the number of

recursions is bounded by n ·m. Furthermore, the number of recursions is bounded

by the number of maximal ideals in R: Since R can be written as the direct sum

of local rings by Corollary 2.2.20, the number of local rings in the decomposition

corresponds exactly to the number of maximal ideals in R.

If, for example, R = Zn for n = pq, where p and q are distinct primes, there

can be at most one recursion. (Note that in case a recursion is needed, we have

factored n.)

We now want to sum up the requirements that are needed for this algorithm to

work efficiently:

• It must be possible to store ring elements efficiently and that every ring element

can be represented with a fixed maximum number of bits.

This is important for both practical considerations and to determine a value

of t in Lemma 2.4.24.

• Basic ring operations, such as multiplication, addition and subtraction, should

be efficient.

• Testing whether an element is zero, or equivalently whether two elements are

equal, should be efficient.

This is important since an element can have several different representations.

• Solving an equation of the type ax = b should be efficient, where the existence

of a solution is known and where a ∈ R is not necessarily a unit.

For special classes of rings one can find specialized algorithms that have less require-

ments. This is, for example, the case for Zpq, where p and q are distinct primes.

How this can be done can be seen for some special classes of rings in Section 2.5.

Choose t as in Lemma 2.4.24 to be minimal. (In fact, choosing t as the smallest

power of 2 satisfying the condition is more effective, since xt can be computed easier

by consecutive squaring.) The algorithm looks like this:

48



2.4.4. Rings Satisfying PicR = 0

Algorithm ComputePrimitiveCombination(e,A)

Parameters:

• e ∈ R: An idempotent nonzero element of R. This will be the unit of

the ring Re we will work in.

• A = (aij)ij ∈ (Re)n×m: A matrix that is primitive over Re satisfying

that every two-by-two minor vanishes.

Returns:

• An element (λj)j of (Re)m, such that
∑m

j=1 λjA•j is primitive in Re.

The algorithm:

(1) For every pair (i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ m, do:

(a) Let c := e · aij .
(b) Compute ct (for example, by consecutive squaring).

(c) If ct = 0, continue with the next (i, j) pair.

(d) Computea some x ∈ Re such that c · ct · x = ct.

(e) Compute xt and let ê := ct · xt.
(f) If ê = e, then let λj′ = 0 for j′ 6= j and λj = e, and return (λj′)j′ .

(g) Compute A′ := (a′i′j′)i′j′ ∈ (Rê)n×m where a′i′j′ := (e− ê) · ai′j′ .
(h) Let (λ′j′)j′ be the result of ComputePrimitiveCombination(e− ê, A′).

(i) Let λj′ := λ′j′ for j′ 6= j and λj := λ′j + ê, and return (λj′)j′ .

(2) If no pair (i, j) was found such that ct 6= 0, output “Matrix not primitive”

and abort.

aIn fact, this is the same as finding some x̃ ∈ R which satisfies ct+1x̃ = ct and then letting

x := x̃e. This works since multiplying by e is a projection from R onto Re.

The initial call is ComputePrimitiveCombination(1, A) for a primitive matrix A ∈
Rn×m of which every two-by-two minor vanishes.

In fact, this algorithm also works for an Artinian ring, since such a ring is the

product of finitely many local Artinian rings, and for each of these the maximal ideal

is nilpotent. By taking the maximum of the nilpotence indices of the maximal ideals

in the local rings one obtains a value for t. That ct = xct+1 always has a solution

for every c ∈ R can be seen in every local factor of R, since there either ct = 0 or ct

is a unit.

From the discussion from the previous pages, we get the following result:

Proposition 2.4.25. Let R be a finite ring. Then the condition (∗) is fulfilled.

Moreover, given a primitive matrix A ∈ Rn×m whose two-by-two minors vanish, the

primitive linear combination of the columns can be computed efficiently.

We will now give some further conditions that imply (∗).
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Lemma 2.4.26. Let R be a ring and m1, . . . ,mk,m distinct maximal ideals. Then

there exists an

m ∈
k⋂

i=1

mi such that m 6∈ m.

Proof. For every i there exists an mi ∈ mi such that mi 6∈ m: otherwise mi would

be a proper subset of m. Let m :=
∏k
i=1mi. Then m ∈ mi for all i and, thus,

m ∈ ⋂k
i=1 mi. Since every maximal ideal is prime, m ∈ m would imply that one of

the mi’s is in m, which would be a contradiction.

Proposition 2.4.27. Let R be a ring with a finite number of maximal ideals. Then

the matrix condition (∗) is fulfilled.

Proof. Let m1, . . . ,mk be the maximal ideals. By Lemma 2.4.26 there exist x1, . . . , xk

such that xi 6∈ mi and xi ∈
⋂
j 6=i mj . Hence, xi maps onto a unit in R/mi and onto

zero in R/mj for all j 6= i.

Let A = (aij)ij ∈ Rn×m be a primitive matrix. Then for every ` one of the

aij ’s is a unit in R/m`; let j` be the column containing this element. Now let

v :=
∑k

`=1 x`A•j` ; then v is the multiple of A•j` by a unit in R/m` and, therefore,

v is primitive in R/m` for every `. Using Lemma 2.4.3 we can conclude that v is

primitive in R.

Corollary 2.4.28. Every Artinian ring satisfies (∗).

Proof. By Proposition 2.2.19 every Artinian ring has finitely many maximal ideals

and, therefore, satisfies (∗) by Proposition 2.4.27.

Since every finite ring is Artinian we now have another proof of the first state-

ment of Proposition 2.4.25. The proof of Proposition 2.4.27 can be turned into

an algorithm to compute the linear combination, if the following constraints are

satisfied:

(1) Efficient addition and multiplication in R;

(2) The maximal ideals m1, . . . ,mk in the sense that k is known and for given x ∈ R

and i ∈ {1, . . . , k}, one can efficiently compute whether x ∈ mi or not;

(3) The xi’s from the proof of Proposition 2.4.27.

The practical use of this algorithm can be questioned as it is desirable to hide as

much information as possible about the structure of R. (Refer to Sections 5.1 and

5.2 for more information.)

Proposition 2.4.29. Let R be a unique factorization domain. Then R fulfills (∗).

Proof. Let A = (aij)ij ∈ Rn×m be a primitive matrix such that every two-by-two

minor vanishes.

Let i be such that Ai• is non-zero. Let vi be a greatest common divisor of

ai1, . . . , aim, and vi =
∑

j µijaij for some µij ∈ R. By the vanishing of the two-by-

two minors we get (∑

j

λjakj

)
A`• =

(∑

j

λja`j

)
Ak•
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for all k, ` ∈ {1, . . . , n} and all (λj)j ∈ Rm. Let k and ` be such that Ak• and A`•
are non-zero. For a fixed k choose λj = µkj ; then

∑
j λjakj = vk and, hence,

vkA`• =
(∑

j

µkja`j

)
Ak•.

Now v`vk is a greatest common divisor for the components of the vector on the left

side, and vk
∑

j µkja`j is a greatest common divisor for the elements of the vector

on the right side. Cancelling vk gives
∑

j µkja`j , and v` =
∑

j µ`ja`j differ only by

multiplication by a unit. This shows that for every i such that Ai• is non-zero, the

combination
∑

j µkjaij is a greatest common divisor of ai1, . . . , aim. Therefore, we

can assume without loss of generality, that µj := µkj = µij for all k. Thus, we have

vk =
∑

j µjakj for all k such that Ak• is non-zero.

Now a greatest common divisor of all aij ’s is also a greatest common divisor of

v1, . . . , vn and, hence, there exist λ1, . . . , λn ∈ R such that

1 =
∑

i

λivi =
∑

i

λi
∑

j

µjaij .

Therefore we have completed the proof since this shows that
∑

j µjA•j is primitive.

2.5 Examples

In this section we will present some examples of finite rings. We will discuss how

they can be represented so that the required operations for the ComputePrimitive-

Combination algorithm can be computed effectively. We will also describe how this

algorithm can be specialized for quotients of Euclidean rings.

2.5.1 Quotients of Euclidean Rings

Definition 2.5.1. A domain R is called Euclidean if there exists a function deg :

R \ {0} → N such that for every f, g ∈ R, g 6= 0 there exist q, r ∈ R with f = qg+ r,

and where either r = 0 or deg r < deg g.

The most important examples are the integers Z, where deg x = |x|, and the

ring of polynomials in one indeterminate over a field with the usual degree function.

One can show that every Euclidean ring is a principal ideal domain and, hence, a

unique factorization domain.

For the remainder of this subsection let R denote an Euclidean ring with degree

function deg, and let a = 〈f〉 be an ideal in R generated by f ∈ R \ ({0} ∪ R∗).

Define

g ≡ g′ (mod f) :⇐⇒ g − g′ is divisible by f.

Next we will study some general properties of R/a. Note that while Euclidean

rings are usually infinite, quotients R/a can be finite. In the cases we will inspect

more closely they are generally finite.

Lemma 2.5.2. We have

R/a = {0 + a} ∪ {r + a | r ∈ R \ {0}, deg r < deg f}.
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Proof. It is clear that the set on the right is a subset of R/a. Conversely, let

g + a ∈ R/a. Write g = qf + r where q, r ∈ R such that r = 0 or deg r < deg f .

Therefore we have g + a = r + a.

Recall that a greatest common divisor d of elements r1, . . . , rn satisfies that it

divides r1, . . . , rn, and for every other divisor d′ of r1, . . . , rn, we have that d′ divides

d.

Remarks 2.5.3.

(a) Since R is a unique factorization domain, the greatest common divisor exists for

any finite collection of elements of R, where at least one is not zero.

(b) If d is a greatest common divisor of g1, . . . , gn, then there exists h1, . . . , hn ∈ R

such that

d =
n∑

i=1

higi.

Such an equation is called a Bézout equation. If one can write 1 =
∑n

i=1 higi

where h1, . . . , hn ∈ R, then 1 is a greatest common divisor of g1, . . . , gn.

(c) For the case where n = 2, the greatest common divisor and the corresponding

Bézout equation can be effectively computed by using the Extended Euclidean

Algorithm, which we will state here without a proof of correctness:

Let a1, a2 ∈ R, both not zero. Compute the following divisions, where qi, aj ∈ R:

a1 = q1a2 + a3 (a3 = 0 or deg a3 < deg a2),

a2 = q2a3 + a4 (a4 = 0 or deg a4 < deg a3),

a3 = q3a4 + a5 (a5 = 0 or deg a5 < deg a4),

...

an = qnan+1 + an+2 (an+2 = 0 or deg an+2 < deg an+3),

...

Eventually we get an+2 = 0 for some n; stop the computations at this point.

Then an+1 is the greatest common divisor of a1 and a2. Now consider the

equations:

a3 = a1 − q1a2, (3)

a4 = a2 − q2a3, (4)

a5 = a3 − q3a4, (5)

...

an = an−2 − qn−2an−1 (n)

an+1 = an−1 − qn−1an (n+ 1)

By iteratively substituting equation (3) into (4) and (5), . . . , (n − 1) into (n)

and (n + 1), and finally (n) into (n + 1), we get an+1 = αa1 + βa2 for some

α, β ∈ R. Thus, we computed a Bézout equation for a1 and a2.
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We can characterize the units in R/a by the following standard result from

algebra:

Lemma 2.5.4. The element g + a ∈ R/a is invertible if, and only if, g and f are

coprime. If 1 = g′g + f ′f is a Bézout equation for g and f where g′, f ′ ∈ R, then

the inverse of g + a in R/a is g′ + a.

Proof. Clearly (g+a)(g′+a) = 1+a if, and only if, 1 = gg′+ff ′ for some f ′ ∈ R.

Therefore, the Extended Euclidean Algorithm can be used to decide whether an

element of R/a is a unit and to compute its inverse if it is a unit.

We are now interested in whether a congruence gx ≡ h (mod f) is solvable, i. e.

if the equation gx = h in R/a is solvable, and how to compute a solution if that is

possible. If g is a unit in R/a, the congruence is always solvable and, by using the

Extended Euclidean Algorithm, the unique solution can be effectively computed.

The following lemma gives a solution to the other cases:

Lemma 2.5.5. Let a, b ∈ R. Denote by d a greatest common divisor of a and f .

Then the congruence

ax ≡ b (mod f)

has a solution x ∈ R if, and only if, d divides b. If x ∈ R is a solution, then all

other solutions are given by

x+
f

d
g, where g ∈ R.

This lemma is a standard result in Elementary Number Theory (see for example

[IR82, p. 32, Proposition 3.3.1]).

From the proof one obtains the following algorithm to decide whether ax ≡ b

(mod f) has a solution and to compute a solution if it is solvable:

(1) Compute a greatest common divisor d of a and f .

(2) If d does not divide b, output “No solutions found” and abort.

(3) Compute a/d, b/d and f/d.

(4) Use the Extended Euclidean Algorithm to compute (a/d)−1 in R/ 〈f/d〉.

(5) Compute x := (a/d)−1(b/d) mod (f/d).

(6) Output x.

If R/a fulfills all other requirements for the ComputePrimitiveCombination al-

gorithm, it can be implemented as specified in Section 2.4. But it can also be

improved if the elements of R/a are represented by their residue modulo f . We first

need a special version of the Chinese Remainder Theorem 2.0.3:

Proposition 2.5.6 (Chinese Remainder Theorem). Let f1, . . . , fk ∈ R be

pairwise coprime and let f := f1 · · · fk and a = 〈f〉. Then the map

ψ : R/a → R/ 〈f1〉 × · · · ×R/ 〈fk〉 , a+ a 7→ (a+ 〈f1〉 , . . . , a+ 〈fk〉)

is an isomorphism.
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Note that the proposition as stated here works for every principal ideal domain.

We state this proof instead of referring to Theorem 2.0.3 since it shows how to

effectively compute the isomorphism and its inverse.

Proof. Consider the map

ϕ : R→ R/ 〈f1〉 × · · · ×R/ 〈fk〉 , a 7→ (a+ 〈f1〉 , . . . , a+ 〈fk〉).

It is clear that ϕ is a ring homomorphism. In addition we have

kerϕ =
k⋂

i=1

ker(R→ R/ 〈fi〉 , a 7→ a+ 〈fi〉) =
k⋂

i=1

〈fi〉 = 〈f〉 = a,

since f is the least common multiple of the fi’s and R is a principal ideal domain.

Hence, we have

R/a ∼= ϕ(R) ⊆ R/ 〈f1〉 × · · · ×R/ 〈fk〉 .

We will now construct ai ∈ R such that ϕ(ai) = (0, . . . , 0, 1, 0, . . . , 0) =: ei, where

the 1 is at the i-th position. This implies that ϕ and, hence, ψ is surjective.

It can easily be seen that fi and f̂i :=
∏n

j=1
j 6=i

fj are coprime for every i. Thus,

there exists a Bézout equation 1 = gifi + ĝif̂i, where gi, ĝi ∈ R. Let ai := 1 − gifi.

Now ai + 〈fi〉 = 1 + 〈fi〉 and if j 6= i,

ai + 〈fj〉 = ĝif̂i + 〈fj〉 = ĝi

n∏

k=1
k 6=i

fk + 〈fj〉 = 0 + 〈fj〉 .

Therefore we have ϕ(ai) = ei.

Assume f = uf e11 · · · fek
k , where u ∈ R∗ and ei ∈ N>0, is the factorization of

f into pairwise distinct primes f1, . . . , fk. By the Chinese Remainder Theorem we

have

R/a ∼= R/ 〈f e11 〉 × · · · ×R/
〈
fek
k

〉
,

and both the isomorphism ψ and its inverse are effectively computable. If the factor-

ization is known, the algorithm ComputePrimitiveCombination can be rewritten

using this fact and the following result.

Lemma 2.5.7. Let f ∈ R be prime and e ∈ N>0. Then S := R/ 〈f e〉 is local, and

S is a field if, and only if, e = 1.

Proof. Note that an element g + 〈f e〉 is not a unit in S if, and only if, f divides g.

Thus, the non-units of S form a subgroup of (S,+) and, hence, by Proposition 2.2.6,

S is local.

For the equivalence note that R/a is a field if, and only if, a is a maximal ideal.

Now 〈f e〉 $ 〈f〉 $ R if, and only if, e > 1. Therefore S can only be a field if e = 1.

For e = 1 it is a field, because f is prime and, hence, 〈f〉 is a prime ideal; in any

principal ideal domain every prime ideal is maximal.

Recall that in local rings a collection of elements is primitive if, and only if, at

least one of them is a unit.

We will now discuss how the algorithm ComputePrimitiveCombination can be

optimized when the factorization of f is not known.
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Let A = (aij)ij ∈ (R/a)k×` be a matrix primitive over R/a, for which every

two-by-two minor of A vanishes. Let i, j be indices such that aij 6= 0. Compute a

greatest common divisor d of aij and f . If d is a unit, aij is a unit in R/a and the

column A•j is primitive. If d is not a unit, then d is a non-trivial factor of f . We

distinguish two cases:

(a) If f contains at least two different prime factors we can write f = f1f2, where

f1 and f2 are coprime non-units. By the Chinese Remainder Theorem 2.5.6 we

have R/a ∼= R/ 〈f1〉 ×R/ 〈f2〉, where the isomorphism is given by

ψ : R/a → R/ 〈f1〉 ×R/ 〈f2〉 , a+ 〈f〉 7→ (a+ 〈f1〉 , a+ 〈f2〉)

and, hence, is efficiently computable. We can then reduce the problem to two

instances of computing a primitive linear combination of the columns, one over

R/ 〈f1〉 and one over R/ 〈f2〉. If d divides f1, then aij is a unit modulo f2 and,

thus, we only have to recurse on the instance over R/ 〈f1〉.

(b) If f = fk1 where f1 is prime and k > 1, the ring R/a is local and, hence, there

must be some i, j such that aij is a unit.

Therefore, the algorithm can be vastly simplified.

Next we want to give two important examples of Euclidean rings that are often

used in practice:

Examples 2.5.8.

(1) As already mentioned, the integers Z, together with the degree function deg x =

|x|, are a Euclidean ring.

If n ∈ N is greater than one, then Zn = Z/ 〈n〉 is a finite non-zero ring.

(2) Let q be a prime power and Fq the finite field with q elements. Consider the ring

of polynomials in one indeterminate, Fq[x]. As already mentioned, this ring is

Euclidean, where the degree function is given by the usual polynomial degree,

i. e. if f =
∑n

i=0 aix
i ∈ Fq[x] \ {0}, where an 6= 0, then deg f = n.

If f ∈ Fq[x] \ {0} is not a unit, then R/ 〈f〉 is a finite non-zero ring.

2.5.2 Quotients of Multivariate Polynomial Rings

In this section we will look at quotients of polynomial rings over finite fields, i. e. R :=

Fq[x1, . . . , xn]/a, where n > 1, q is a prime power and a is an ideal in Fq[x1, . . . , xn].

Assume that operations in Fq can be computed effectively.

By the Hilbert Basis Theorem (Proposition 2.0.6 (b)) Fq[x1, . . . , xn] is Noetherian

and, hence, every ideal a in R := Fq[x1, . . . , xn] can be written as a = 〈f1, . . . , fs〉 for

some f1, . . . , fs ∈ Fq[x1, . . . , xn]. Fix a = 〈f1, . . . , fs〉. The question arises if there

is an analogon to polynomial division in the univariate case, which would allow an

effective representation of elements and efficient arithmetic in R. A solution for this

problem is given by so called Gröbner bases and the division algorithm. We will

recall the basics here; more information can be found for example in chapter 15 of

[Eis95] and in the books [CLO96] and [CLO98].
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Definition 2.5.9. Let F be a field. Consider the polynomial ring F[x1, . . . , xn].

(a) If α = (αi)i ∈ Nn, we write xα for xα1
1 · · ·xαn

n .

(b) A monomial order ≤ is a total well-ordering1 of Nn that is compatible with

addition, i. e. for α, β, γ ∈ Nn, α ≤ β if, and only if, α + γ ≤ β + γ. For

xα, xβ ∈ F[x1, . . . , xn] we define

xα ≤ xβ :⇐⇒ α ≤ β.

(c) Let ≤ be a monomial order and f ∈ F[x1, . . . , xn] \ {0}. Let f =
∑k

i=1 aix
αi ,

where α1 > · · · > αk and ai ∈ F \ {0} for every i. Define

mdeg≤(f) := α1 (multi degree),

LM≤(f) := xα1 (leading monomial),

LT≤(f) := a1x
α1 (leading term).

(d) If a is an ideal in F[x1, . . . , xn], we call the ideal

in≤(a) := 〈{LM≤(f) | f ∈ a \ {0}}〉

the initial ideal of a.

(e) Let f1, . . . , fs ∈ F[x1, . . . , xs] and a be an ideal in F[x1, . . . , xn]. We call f1, . . . , fs

a Gröbner basis of a if in≤(a) = 〈LM≤(f1), . . . ,LM≤(fs)〉.

Remarks 2.5.10. Let F be a field. Consider the polynomial ring F[x1, . . . , xn]. If

not said otherwise, ≤ is an arbitrary monomial order on Nn and a is an arbitrary

ideal in F[x1, . . . , xn].

(a) [CLO96, pp. 52ff] There exist monomial orders for every n. For n = 1, there is

exactly one, but for n > 1 there is an infinite number of monomial orders. An

example is the lexicographic order: For (αi)i, (βi)i ∈ Nn define

(αi)i < (βi)i :⇐⇒ ∃1 ≤ j ≤ n such that αi = βi for all i < j and αj < βj .

(b) [CLO96, p. 75, Corollary 6] If f1, . . . , fs is a Gröbner basis of a, it can be shown

that a = 〈f1, . . . , fs〉.

(c) [CLO96, p. 87, Theorem 2] If a = 〈f1, . . . , fs〉, then a Gröbner basis of a can be

computed from the fi’s by Buchberger’s algorithm.

(d) [CLO96, p. 80] If f1, . . . , fs is a Gröbner basis of a, every f ∈ F[x1, . . . , xn] can

be represented as f =
∑s

i=1 gifi + r, where g1, . . . , gs, r ∈ F[x1, . . . , xs] such

that mdeg≤(figi) ≤ mdeg≤(f) if figi 6= 0 and none of the monomials of r is

contained in the initial ideal of a. Further note that r is unique, and there exists

an algorithm which efficiently computes such a representation. This algorithm

allows to efficiently decide whether f ∈ F[x1, . . . , xn] is in a or not: f ∈ a if, and

only if, r = 0. From now on, we write f
a,≤

for r, or simply f if ≤ and a are

clear from the context.

The algorithm that computes the representation is called the division algorithm

[CLO96, pp. 61f, Theorem 3]. We will state it here without a proof of correctness:

1A total order ≤ on a set M is a well-ordering if every non-empty subset of M has a minimum

with respect to ≤.
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(1) Set gi := 0 for all i and r := 0.

(2) While f 6= 0 repeat the following:

• If there is an i ∈ {1, . . . , s} such that LM≤(fi) divides LM≤(f):

(1) Let gi := gi +
LT≤(f)
LT≤(fi)

.

(2) Let f := f − LT≤(f)
LT≤(fi)

fi.

• Otherwise:

(1) Let r := r + LT≤(f).

(2) Let f := f − LT≤(f).

(3) Output
∑s

i=1 gifi + r.

(e) [CLO98, p. 36] Let Ba,≤ := {α ∈ Nn | xα 6∈ in≤(a)}. Then {xα + a | α ∈ Ba,≤}
is a F-vector space basis of F[x1, . . . , xn]/a.

From now on, let ≤ be an arbitrary, but fixed, monomial order on Nn. We will

write LT instead of LT≤, Ba instead of Ba,≤ etc.

The last remark shows that not every ideal a is useful for our purposes, as we

want R = Fq[x1, . . . , xn]/a to be finite. If a Gröbner basis f1, . . . , fs of a and, thus, a

basis LM(f1), . . . ,LM(fs) of the initial ideal in(a) is given, one can decide whether R

is finite or not: If for every i ∈ {1, . . . , n} there exists an ei ∈ N such that xei
i ∈ in(a),

R is finite (and vice versa). And it is xei
i ∈ in(a) if, and only if, LM(fj) is a multiple

of xei
i for a j. Therefore R is finite if, and only if, for every i ∈ {1, . . . , n} there is

some j ∈ {1, . . . , s} such that LM(fj) ∈ Fq[xi]. (See [CLO98, p. 37].)

Note that ideals a 6= F[x1, . . . , xn] such that dimF F[x1, . . . , xn]/a < ∞ are

called zero-dimensional. These are exactly the ideals such that the Krull dimen-

sion dim F[x1, . . . , xn]/a is zero.

What is missing for the ComputePrimitiveCombination algorithm is the ques-

tion of how to solve fx = g (mod a) for f, g ∈ Fq[x1, . . . , xn], if a solution is known

to exist. We will show that this question can be reduced to the problem of solving

systems of linear equations over Fq.
Fix a = 〈f1, . . . , fs〉 and let B := Ba. Let α1 < α2 < · · · < αt be the elements of B.

Hence, R := Fq[x1, . . . , xn]/a ∼= Ftq as an Fq-vector space. For f ∈ Fq[x1, . . . , xn], let

Mf ∈ Ft×tq be the matrix representation of the Fq-vector space endomorphism x 7→
fx of R, where the basis is given by (xα1 + a, . . . , xαt + a). It is clear that ϕ :

Fq[x1, . . . , xn] → Ft×tq , f 7→ Mf is a ring homomorphism whose kernel is a. Let ψ :

R→ Ftq, xαi 7→ ei be the coordinate map2 for the Fq-basis (xα1 , . . . , xαn) of R. It is

easy to see that ψ can be extended to a vector space homomorphism Fq[x1, . . . , xn] →
Ftq by f 7→ ψ(f), with kernel a. By writing f =

∑k
i=1 fix

βi , it can be easily seen

that

ψ(fg) =
k∑

i=1

fiψ(xβig) =
k∑

i=1

fiMxβiψ(g) = Mfψ(g).

This gives that fg ≡ h (mod a) if, and only if, ψ(fg) = ψ(h), which again is

equivalent to Mfψ(g) = ψ(h). Moreover, since further ψ is surjective, this leads to a

solution to the problem as to whether fg ≡ h (mod a) holds for a g ∈ Fq[x1, . . . , xn]:

2Let ei denote the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Ft
q, where the 1 is at the i-th position.
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the congruence is solvable if, and only if, the system of linear equations

Mf




g1
...

gt


 = ψ(h), g1, . . . , gt ∈ Fq (∗)

over Fq is solvable. Furthermore, (g1, . . . , gt) is a solution of (∗) if, and only if,

g =
∑t

i=1 gix
αi is a solution for fg ≡ h (mod a).

Now Mf respectively ψ(h) can be effectively computed from f respectively h by

using the division algorithm, and the Gaussian elimination algorithm can be used to

effectively solve (∗) or to test whether a solution does exist. Therefore, we provided

everything needed for the ComputePrimitiveCombination algorithm.

Remarks 2.5.11.

(1) We conclude that f ∈ R = F[x1, . . . , xn]/a is invertible if, and only if, Mf is

invertible, which is the case if, and only if, detMf 6= 0.

(2) When n and/or t are large, the algorithms presented here are not very efficient,

both in running time and memory consumption.

(3) Instead of taking quotients of F[x1, . . . , xn] there is another way to construct

F-algebras. Unfortunately, not every finitely generated F-algebra can be repre-

sented by this construction.

Let (M, ·, 1M ) be an Abelian monoid and let R := ⊕α∈MF. Define a multiplica-

tion on R by

(xα)α∈M · (yα)α∈M := (zα)α∈M where zγ :=
∑

α,β∈M
αβ=γ

xαyβ .

By writing
∑′

α∈M xαα for (xα)α∈M , it is easy to see that R is a commutative

ring with the unit 1F1M . Since F is embedded in R by x 7→ x1M , R is an

F-algebra. Again, the determination of whether an element is a unit or whether

an equation is solvable can be reduced to solving systems of linear equations

over F.

If M = {α1, . . . , αn} is finite and n = |M |, one can define a surjective F-linear

map ϕ : F[x1, . . . , xn] → R by xi 7→ αi. If a := kerϕ, then F[x1, . . . , xn]/a ∼= R,

and Ba corresponds to M . (Obviously this is not a good method to find such

a representation as, in general, there are representations with substantially less

indeterminates.)

Finally, we want to show why not every quotient of F[x1, . . . , xn] can be de-

scribed by this construction. Consider F[x]/
〈
x2
〉
, which is a local ring and not

isomorphic to F × F. Assume that the characteristic of F is 6= 2. Up to iso-

morphism there are only two monoids with two elements, namely (Z2,+) and

G = {1, a} with 1 ⊕ 1 = 1 and 1 ⊕ a = a ⊕ a = a ⊕ 1 = a. The construction

resulting from (Z2,+) is

F[x, y]/
〈
x− 1, y2 − x

〉 ∼= F[y]/
〈
y2 − 1

〉
= F[y]/ 〈(y − 1)(y + 1)〉 ∼= F × F
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since 2 6= 0 in F. The construction resulting from (G,⊕) is

F[x, y]/
〈
x− 1, y2 − y

〉 ∼= F[y]/ 〈y(y − 1)〉 ∼= F × F.

The reason why we mention this method is that it might lead to an easier

implementation in some cases.

2.6 Sheaves

In this section we want to give a short introduction to the Theory of Sheaves. Sheaves

are objects that collect local and global information about some other object. As a

reference see [Har77, pp. 60ff, ch. II, Section 1 and Section 5]. We want to remark

that one can also define sheaves in a different way that gives the same results. This

is, for example, done in [Iit82].

2.6.1 Presheaves and Sheaves

Let C be an arbitrary category. For simplicity, we will assume that certain products

and coproducts do exist in some parts. In the categories we will use later, namely

Ab and Ring, such products do exist.

First we want to fix a notation:

Definition 2.6.1. Let X be a topological space and U ⊆ X an open set. Then one

defines UU as the set of open subsets of U . Moreover, if V ⊆ U is any set, then

we denote with UU,V the open sets in UU which contain V , and we write UU,p for

UU,{p}.

Remark 2.6.2. In fact, UU is the trace topology of X induced onto U .

For the remainder of this subsection, we will always mean a topological space

when we write X. We begin by defining what a (pre)sheaf in C over X is.

Definition 2.6.3. Let C be a category. A presheaf F in C on X is a map that

assigns an object F(U) ∈ C to every open set U ∈ UX , together with a set of

morphisms ρUV : F(U) → F(V ) for each pair U, V ∈ UX such that V ⊆ U , satisfying

the following properties:

(1) We have ρVW ◦ ρUV = ρUW if U, V,W ∈ UX satisfy W ⊆ V ⊆ U .

(2) For every U ∈ UX , we have ρUU = idF(U).

For f ∈ F(U) we call ρUV (f) the restriction of f to V , and also write f |V instead.

Moreover, one calls the elements f ∈ F(U) sections, and the elements f ∈ F(X)

global sections. When U is clear, one also writes •|V for ρUV .

If one more condition is satisfied, we call F a sheaf in C on X:

(3) If U ∈ UX , open sets Ui ∈ UU and fi ∈ F(Ui) are given for every i ∈ I, where I

is an arbitrary index set that satisfies
⋃
i∈I Ui = U , and fi|Ui∩Uj = fj |Ui∩Uj for

every i, j ∈ I, then there exists a unique f ∈ F(U) such that for every i ∈ I we

have f |Ui = fi.
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For a sheaf F , one also writes Γ(U,F) instead of F(U).

We will mainly be interested in (pre-)sheaves of Abelian groups and rings, i. e.

(pre-)sheaves in the categories Ab and Ring.

Remarks 2.6.4. Let F be a sheaf on X. Then F(∅) = 0 by property (3).

A third kind of sheaf will be important later in this thesis:

Definition 2.6.5. Let O be a sheaf of rings on X, and F be a sheaf of Abelian groups

on X. One says that F is an O-module or a sheaf of O-modules if for every U ∈ UX ,

the group F(U) is an O(U)-module and the restriction maps •|V : F(U) → F(V )

for V ∈ UU , U ∈ UX , V ⊆ U are compatible with the module structure, i. e. one has

(r · f)|V = r|V · f |V for every r ∈ O(U), f ∈ F(U).

Next we define what a morphism between two sheaves over X is. With this we

get the category of sheaves in C over X.

Definition 2.6.6. Let F and G be two presheaves in C on X. A morphism of

presheaves f : F → G is a collection of morphisms f(U) : F(U) → G(U) for

every U ∈ UX that are compatible with the restrictions, i. e. if U, V ∈ UX with V ⊆
U , then •|V ◦ f(U) = f(V ) ◦ •|V . If both F and G are sheaves, one speaks of

f as a morphism of sheaves. An isomorphism of (pre-)sheaves is a morphism of

(pre-)sheaves having a two-sided inverse.

To be able to express local properties we need the following definition:

Definition 2.6.7. [Har77, p. 62, ch. II] Let F be a presheaf on X and p ∈ X.

Then a germ of F in p is a pair 〈U, f〉, where U ∈ UX,p and f ∈ O(U), where

two germs 〈U, f〉 and 〈V, g〉 are identified if, and only if, there is some W ∈ UX,p

satisfying W ⊆ U ∩V and f |W = g|W . The set of germs of F in p is called the stalk

of F in p, denoted by Fp. We also write fp for the germ 〈U, f〉 in Fp.

Remarks 2.6.8.

(1) [Har77, p. 62, ch. II, paragraph after definition] Note that the identification of

two germs is an equivalence relation. Moreover, the object Fp is of the same

kind as the objects F(U), U ∈ UX , i. e. it is an Abelian group, ring or module

if F is a presheaf of Abelian groups or rings or a sheaf of modules, respectively.

(2) [Har77, p. 63, ch. II, paragraph after definition] Moreover, if F and G are

presheaves on X, f : F → G is a morphism of presheaves and p ∈ X, then

f induces a canonical map fp : Fp → Gp, which again is compatible with the

structure of the objects F(U), G(U), U ∈ UX .

(3) [Har77, p. 62, ch. II, Definition] In more fancy language, one can write Fp =

lim−→F(U), where the limit is taken over all U ∈ UX,p. (See Definition 2.6.19 for

lim−→, and Remarks 2.6.20 (c).)

(4) [Har77, p. 63, ch. II, proof of Proposition 1.1] Let s ∈ F(U). If sp = 0 for

every p ∈ U , then s = 0.
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We now want to define what a sub(pre)sheaf is:

Definition 2.6.9. Let F be a presheaf in C on X. A subpresheaf G of F is a

presheaf in C on X such that for every open set U we have that G(U) is a sub-object

of F(U) and the restriction maps of G are induced by those of F . If F and G are

sheaves, one calls G a subsheaf of F .

Remark 2.6.10. Note that if G is a subsheaf of F , then for every x ∈ X we have

that Gx is a sub-object of Fx.

The next proposition constructs a sheaf for every presheaf whose sections are

functions on X. In case the presheaf was already a sheaf, this construction is iso-

morphic to the sheaf itself. Hence, the proposition shows that every sheaf can be

interpreted as a sheaf whose sections are functions on X. This construction is also

often used as many constructions concerning sheaves result in presheaves; in that

case the sheafification is usually added as a last step of the construction.

Proposition 2.6.11. [Har77, p. 64, Proposition-Defintion 1.2 and its proof] Let F
be a presheaf in C on X. Then we can construct a sheaf F ′ as follows: For every

open set U ∈ UX , let

F ′(U) :=



(f (p))p∈U ∈

∏

p∈U
Fp

∀p ∈ U ∃V ∈ UU,p, f ∈ F(V )

∀q ∈ V : f (q) = 〈V, f〉



 ,

and define the restriction maps by

(f (p))p∈U
∣∣∣
V

:= (f (p))p∈V for U, V ∈ UX , V ⊆ U.

Moreover, we can construct a morphism of presheaves ρF : F → F ′ by

ρF (U) : F(U) → F ′(U), f 7→ (〈U, f〉)p∈U ,

which satisfies the following universal property:

Given a sheaf G and a morphism of presheaves ϕ : F → G, there exists a unique

morphism of sheaves ψ : F ′ → G such that ψ ◦ ρF = ϕ.

F ϕ //

ρF   A
AA

AA
AA

A G

F ′
ψ

??~~~~~~~~
�

Moreover, F ′ is determined by this universal property up to a unique isomor-

phism. The sheaf F ′ is called the sheaf associated to the presheaf F or the sheafi-

fication of F . If F is a sheaf, then F ′ is isomorphic to F .

Remarks 2.6.12. [Har77, p. 64, ch. II, Proposition-Definition 1.2 and its proof]

(a) One can interpret an element f := (f (p))p∈U ∈ F ′(U) as a function

f : U →
∐

p∈U
Fp, p 7→ f (p).

This shows that every sheaf can be interpreted as a sheaf whose sections are

functions.
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(b) From this construction one directly sees that for every x ∈ X we have (F ′)x =

Fx. In particular if Fx = Gx for two presheaves F and G, their associated

sheaves are the same.

We now want to present constructions involving sheaves that do not always result

in sheaves, but in presheaves:

Remark 2.6.13. Let I be an index set and Fi, i ∈ I, a family of sheaves in C on

X. Then

F : U 7→
⊕

i∈I
Fi

is a presheaf, where the restriction maps ρUV : F(U) → F(V ) are the direct sum of

the restriction maps ρUV : Fi(U) → Fi(V ). The same construction can be made using

the direct product instead of the direct sum. For the direct product, the presheaf is

in fact a sheaf.

Definition 2.6.14. Let I be an index set and Fi, i ∈ I, a family of sheaves. Denote

by
⊕

i∈I Fi the sheaf associated to the presheaf

U 7→
⊕

i∈I
Fi(U),

called the direct sum of the Fi’s. Also denote by
∏
i∈I Fi the sheaf

U 7→
∏

i∈I
Fi(U),

called the direct product of the Fi’s.

Remark 2.6.15. [Iit82, p. 44, §1.12a] If I is a finite set, then the presheaf U 7→⊕
i∈I Fi(U) is already a sheaf.

Another construction is the quotient of two sheaves.

Lemma 2.6.16. [Iit82, p. 34] Let F be a presheaf and G a subpresheaf of F . Then

U 7→ F(U)/G(U) is a presheaf, with the restriction maps being the maps induced by

the restriction maps of F , i. e.

ρUV : F(U)/G(U) → F(V )/G(V ), f + G(U) 7→ f |V + G(V ).

Definition 2.6.17. The presheaf U 7→ F(U)/G(U) (from Lemma 2.6.16) is called

the quotient presheaf F//G. If F and G are sheaves, the sheafification of F//G is

called the quotient sheaf F/G

We close this subsection with the following remark:

Remark 2.6.18. If U ∈ UX is an open set and F is a sheaf on X, then one can

naturally restrict F to U and has a sheaf F|U on U . This comes from the fact that

the trace topology on U is exactly the set of open subsets of X which lie in U .
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2.6.2 Transportation of Sheaves via Continuous Maps

We want to introduce two constructions of transporting a sheaf to other topological

spaces via a continuous map. For this we need to introduce the direct limit lim−→•,
a construction from category theory. For example, it generalizes the following con-

struction: if p is prime, one can see Fpn as a subfield of Fpm if n divides m. If one

forms
⋃∞
n=0 Fpn , where two fields Fpn and Fpn′ are naturally embedded in Fpm where

m is the least common multiple of n and n′, one obtains a field containing all Fpn ,

n ∈ N. Note that this field is, in fact, the algebraic closure Fp of Fp.

Definition 2.6.19. Let I be an arbitrary index set and C a category.

(a) We say that I is preordered by a binary relation ≤ on I if ≤ is reflexive and

transitive, satisfying that for every i, j ∈ I, there exists some k ∈ I such that i ≤
k and j ≤ k.

(b) Let I be a preordered set. Assume that for every i ∈ I an object Gi ∈ C is

given, and for every pair i, j ∈ I with i ≤ j there is a morphism ϕij : Gi → Gj

satisfying that for i ≤ j ≤ k, where i, j, k ∈ I, we have that ϕjk ◦ ϕij = ϕik. Then

the Gi’s, together with the ϕij’s, are called a direct system in C .

Gi

ϕi
k

��

ϕi
j

��6
66

66
66

Gj

ϕj
k����

��
��
�

�

Gk

We write (I,≤, (Gi)i, (ϕij)i,j) to specify the direct system, or simply ((Gi)i, (ϕ
i
j)i,j)

if I and ≤ are clear from the context.

(c) Now let (I,≤, (Gi)i, (ϕij)i,j) be a direct system. Another object G ∈ C (of the

same type as the Gi’s) with a set of morphisms fi : Gi → G is called the direct

limit of (I,≤, (Gi)i, (ϕij)i,j), written G = lim−→i∈I Gi or simply G = lim−→Gi, if for

every pair i, j ∈ I satisfying i ≤ j, we have ϕij ◦ fi = fj, and the following

universal property is satisfied:

If H ∈ C is an object and the hi : Gi → H are morphisms such that hj ◦ϕij = hi

for every pair i, j ∈ I satisfying i ≤ j, then there exists a unique morphism ψ :

G → H such that ψ ◦ fi = hi for every i. We get the following commutative

diagram:

Gi

fi   A
AA

AA
AA

A hi

��
ϕi

j

��

G
∃!ψ //___ H

Gj

fj

>>~~~~~~~~
hj

AA
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Remarks 2.6.20.

(1) The universal property of the direct limit can be used to show that it is defined

up to isomorphism if it exists.

(2) In Remarks 2.6.8 (c) we wrote Fp = lim−→F(U), U ∈ UX,p. The preorder ≤ for

this direct limit is defined by U ≤ V if, and only if, V ⊆ U .

The following proposition guarantees the existence of the direct limit in all sit-

uations we need:

Proposition 2.6.21. [Eis95, pp. 705ff, Appendix 8] In both the category of Abelian

groups and the category of rings, direct limits exist for every direct system.

Let ((Gi)i, (ϕ
i
j)i,j) be a direct system of Abelian groups respectively rings, and let

G := lim−→Gi and gi : Gi → G be the canonical morphisms.

(1) Then every g ∈ G is of the form gi(xi) for some i ∈ I and xi ∈ Gi.

(2) Two elements gi(a), gj(b) ∈ G, where i, j ∈ I and a ∈ Gi, b ∈ Gj, are the same if,

and only if, there exists a k ∈ I satisfying i ≤ k, j ≤ k such that ϕik(a) = ϕjk(b).

Remark 2.6.22. Assume I is a preordered index set, and ((Gi)i, (ϕ
i
j)i,j) and

((Hi)i, (ψ
i
j)i,j) two direct systems whose direct limits exist. Moreover, let fi : Gi →

Hi be a morphism for every i ∈ I, satisfying fj ◦ ϕij = ψij ◦ fi for every pair i, j ∈ I

where i ≤ j. Denote by gi : Gi → lim−→Gi and hi : Hi → lim−→Hi the canonical maps.

Then there exists a unique morphism f : lim−→Gi → lim−→Hi satisfying f ◦ gi = hi ◦ fi
for every i ∈ I.

This basically shows that the direct limit is a functor from the category of direct

systems over I whose direct limits do exist.

Now we will define the direct image and the inverse image of a sheaf. For the

remainder of this subsection X and Y will always denote topological spaces.

Definition 2.6.23. Let f : X → Y be a continuous map and F be a sheaf on X.

Define the direct image f∗F of F under f to be the sheaf on Y given by (f∗F)(U) =

F(f−1(U)), U ∈ UY .

Moreover, if G is another sheaf on X and ϕ : F → G is a morphism of sheaves,

define f∗ϕ : f∗F → f∗G as the morphism of sheaves on Y given by (f∗ϕ)(U) =

ϕ(f−1(U)), U ∈ UY .

Proof. It is obvious that f∗F is a sheaf and f∗ϕ is a morphism of sheaves.

Definition 2.6.24. Let f : X → Y be a continuous map and F be a sheaf on

Y . Define the inverse image f−1(F) of F under f as the sheaf associated with

the presheaf U 7→ lim−→F(V ) on X; here the limit is taken over all V ∈ UY such

that f(U) ⊆ V , and the preorder ≤ is defined by V ≤ V ′ if, and only if, V ′ ⊆ V .

If G is another sheaf on Y and ϕ : F → G is a morphism of sheaves, then one can

define a morphism of sheaves f−1ϕ : f−1F → f−1G by using the universal property

of lim−→.
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Proof. It is a little harder than for f∗, but also not too difficult to see that U 7→
lim−→F(V ) gives a presheaf on X and that f−1ϕ is a morphism of sheaves.

Remarks 2.6.25. Let f : X → Y be a continuous function.

(a) We have that f∗ is a functor from the category of sheaves on X to the category

of sheaves on Y .

(b) Let F be a sheaf on Y . For every p ∈ X, there is a natural map (f∗F)f(p) → Fp.

(c) We have that f−1 is a functor from the category of sheaves on Y to the category

of sheaves on X.

2.6.3 Morphisms of Sheaves

Let X be a topological space and C be one of the categories Ab and Ring. All

sheaves considered here will be sheaves in C on X. The following proposition shows

how local conditions naturally appear for sheaves:

Proposition 2.6.26. [Har77, p. 63, Proposition 1.1] Let f : F → G be a mor-

phism of sheaves. Then f is an isomorphism if, and only if, fx : Fx → Gx is an

isomorphism for every x ∈ X.

We continue by defining the kernel, image and cokernel of a morphism.

Definition 2.6.27. Let f : F → G be a morphism of presheaves.

(a) The presheaf given by U 7→ ker f(U) is called the kernel presheaf of f .

(b) The presheaf given by U 7→ im f(U) is called the image presheaf of f . Note that

if F and G are sheaves of rings, then the kernel presheaf is a sheaf of F-modules.

(c) If the sheaves in question are sheaves of Abelian groups or modules, the presheaf

given by U 7→ G(U)/ im f(U) is called the cokernel presheaf of f .

The restriction maps are the obvious ones.

Remark 2.6.28. If F and G are sheaves in the definition, then the kernel presheaf

is also a sheaf. Note that in general the image presheaf and the cokernel presheaf

are no sheaves.

Definition 2.6.29. Let f : F → G be a morphism of sheaves.

(a) We define the kernel ker f of f to be the kernel presheaf of f .

(b) We define the image im f of f to be the sheaf associated with the image presheaf

of f .

(c) If the sheaves in question are sheaves of Abelian groups or modules, we define

the cokernel coker f of f to be the sheaf associated with the cokernel presheaf of

f .

These constructions can be used to define in which cases morphisms of sheaves

are injective or surjective, and in which cases sequences of sheaves are exact.
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Definition 2.6.30. Let f : F → G a morphism of sheaves.

(a) We say that f is injective if ker f = 0, i. e. if ker f is the zero sheaf.

(b) We say that f is surjective if im f = G.

(c) We say a sequence of sheaves

· · · // F (i−1)
ϕ(i−1)

// F (i)
ϕ(i)

// F (i+1) // · · ·

is exact at i if kerϕ(i) = imϕ(i−1).

Remark 2.6.31. [Har77, pp. 64f, ch. II, Definition] If f : F → G is a morphism

of sheaves, then f is injective if, and only if, f(U) : F(U) → G(U) is injective for

every open set U ⊆ X. In general, for surjectivity only one direction holds: if f(U)

is surjective for every U , then f itself is surjective.

The following proposition shows that being exact is a local property. Note that

being a local property can be defined in a much more general setting than for modules

over rings by the use of sheaf theory. In particular it shows that our definitions of

kernel, image, cokernel, injective and surjective have been chosen correctly.

Proposition 2.6.32. [Har77, p. 66, ch. II, Exercise 1.2 (c)] A sequence of sheaves

· · · // F (i−1)
ϕ(i−1)

// F (i)
ϕ(i)

// F (i+1) // · · ·

is exact at i if, and only, if the the induced exact sequences

· · · // F (i−1)
x

ϕ
(i−1)
x // F (i)

x

ϕ
(i)
x // F (i+1)

x
// · · ·

are exact at i for every x ∈ X.

Corollary 2.6.33. Let f : F → G be a morphism of sheaves.

(a) Then f is injective or surjective if, and only if, for every x ∈ X, the stalk fx is

injective or surjective, respectively.

(b) We have that f is an isomorphism if, and only if, it is both injective and sur-

jective.

Proof. The first claim directly follows from Proposition 2.6.32 and the second from

Proposition 2.6.26 and (a).

2.6.4 Ringed Spaces

Ringed space is an important concept. A special subclass of the class of ringed

spaces consists of the schemes that we will define in Section 3.3.

Definition 2.6.34. Let X be a topological space and OX be a sheaf of rings on

X. Then (X,OX) is called a ringed space, and OX is called the structure sheaf of

(X,OX). If no confusion can arise, we simply write X for (X,OX). The elements

of the topological space X are called points.

A morphism of ringed spaces is a pair (f, f#) : (X,OX) → (Y,OY ) consisting

of a continuous map f : X → Y and a map of sheaves of rings f# : OY → f∗OX .

Instead of (f, f#) we will simply write f if it is clear from the context.
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Remark 2.6.35. Note that if f : X → Y is a map of ringed spaces X and Y , then

f# induces a map on stalks

f#
p : OY,f(p) → OX,p, p ∈ X,

since by Remark 2.6.25 (b) there is a morphism (f∗OX)f(p) → OX,p.

2.6.5 Sheaves of Modules

Let (X,O) be a ringed space. We have defined (see Definition 2.6.5) what a sheaf of

O-modules or an O-module is. In this last subsection of the chapter we want to take

a closer look at O-modules. We begin by defining what a morphism of O-modules

is and what a sub-O-module is.

Definition 2.6.36. Let F and G be O-modules. Then a morphism of sheaves f :

F → G is a morphism of O-modules or an O-morphism if f(U) : F(U) → G(U) is

an O(U)-linear map for every U ∈ UX . The set of O-morphisms from F to G is

denoted by HomO(F ,G) or shorter Hom(F ,G) if no confusion can arise.

If G is a subsheaf of F and both F and G are O-modules, then G is called a

sub-O-module of F .

Remarks 2.6.37. Let F and G be O-modules.

(1) If f : F → G is an O-morphism, then the kernel ker f , the image im f and the

cokernel coker f are again O-modules.

(2) If G is a sub-O-module of F , then F/G is again an O-module.

(3) The arbitrary direct sum or direct product of O-modules is again an O-module.

(4) If U ∈ UX is an open subset, then G|U is an O|U -module.

Proof. The claims (1), (2) and (3) are clear. For (4) recall that the trace topology

of an open subset is exactly the set of open sets that is contained in that subset.

A powerful construction for O-modules is the tensor product.

Definition 2.6.38. Let F and G be two O-modules. Let the tensor product of F
and G, denoted by F ⊗O G, be the sheaf associated to the presheaf

U 7→ F(U)⊗O(U) G(U)

with the obvious restriction maps.

Proof. It is easy to see that this assignment gives a presheaf.

As for modules over rings, the notion of being free is important for O-modules.

While for modules over rings the notion of a projective module turns out to be being

free locally, for O-modules this can be reached more easily.

Definition 2.6.39. Let F be an O-module.

(a) If F is isomorphic to a direct sum of copies of O, then F is called free. The

rank of F is the number of copies of O which were required.
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(b) If there is an open cover Ui of X such that F|Ui is a free O|Ui-module, then F
is called locally free. The rank of F on such an Ui is defined to be the rank of

F|Ui as an O|Ui-module.

If the rank is the same for every Ui, then one says F is locally free of rank n,

where n is the rank on one (and hence all) Ui.

(c) If F is a locally free sheaf of rank one, then F is called an invertible sheaf.

Remark 2.6.40. Define the rank of a locally free O-module at a point to be the

rank of the module restricted to an open neighborhood of that point on which it is

free. Then the rank is a continuous function X → N∪{∞}, where N∪{∞} has the

discrete topology. (This means that it is locally constant.) Thus, if X is connected,

the rank is constant.

Proof. Let x ∈ X be a point and U1, U2 ∈ UX,p two open sets such that F|Ui is

a free O|Ui-module for both i. Let U := U1 ∩ U2 ∈ UX,p, then F|Ui(U) = F(U)

and O|Ui(U) = O(U) for both i and, therefore, the rank of F|Ui(U) as an O|Ui(U)-

module does not depend on i. Hence, the function rank : X → N is well-defined

and, since it is locally constant, it is also continuous.

As for modules over rings, one can define the tensor algebra, exterior algebra

and exterior power for O-modules. This will be important for defining Kähler dif-

ferentials for schemes.

Definition 2.6.41. [Har77, p. 127, ch. II, Exercise 5.16] For an O-module F
define the tensor algebra TO(F), the exterior algebra

∧
O F and the n-th exterior

power
∧n

O F the same way as for modules over rings (see Definition 2.1.37).

Remark 2.6.42. [Har77, p. 127, ch. II, Exercise 5.16(a)] If F is a locally free O-

module of rank n, the r-th component of TO(F) is a locally free O-module of rank nr

and
∧r

O F is a locally free O-module of rank
(
n
r

)
.

If one takes a look at the set of O-module morphisms between two O-modules,

this set naturally has itself the structure of an O-module.

Definition 2.6.43. [Har77, p. 109, ch. II and p. 67, ch. II, Exercise 1.15] Let F
and G be O-modules. The presheaf

U 7→ HomO|U (F|U ,G|U )

is, in fact, a sheaf and is denoted by HomO(F ,G) and called the sheaf Hom.

If F is any O-module, define its dual O-module, denoted by Fg, to be the O-

module HomO(F ,O).

We next state two results for locally free O-modules and invertible O-modules.

Proposition 2.6.44. [Har77, p. 123, Exercise 5.1] Let F be a locally free O-module

of finite rank n.

(1) We have (Fg)g ∼= F .
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(2) If G is any other O-module, then

HomO(F ,G) ∼= Fg ⊗O G.

(3) If G and H are O-modules, then

HomO(F ⊗G,H) ∼= HomO(G,HomO(F ,H)).

Proposition 2.6.45. [Har77, p. 143, Proposition 6.12] Let F and G be invertible

sheaves on (X,O).

(1) Then F ⊗O G is again an invertible sheaf on (X,O).

(2) We have that F ⊗O Fg ∼= O.

By the latter proposition the following definition is well-defined:

Definition 2.6.46. Let PicX denote the Picard group of the ringed space X,

defined as the group of isomorphism classes of invertible sheaves on X, the group

operation being tensoring of representatives.

We will see that the Picard group of special ringed spaces corresponds to the

Picard group of rings.

Definition 2.6.47. An O-module I is called an ideal sheaf if it is a sub-O-module

of O.

Remark 2.6.48. This means that I(U) is an ideal in O(U) for every U ∈ UX .

Now let (Y,OY ) be another ringed space and f : (X,O) → (Y,OY ) be a mor-

phism of ringed spaces given by a continuous map f : X → Y and a morphism of

sheaves f# : OY → f∗O.

Remark 2.6.49. There exists a natural morphism f−1OY → O:

Recall that f−1OY is the presheaf associated with the sheaf

U 7→ lim−→
V ∈UY,f(U)

OY (V ),

where U ∈ UX . For every V ∈ UY,f(U), we have a natural map

OY (V )
f#(V ) // (f∗O)(V ) O(f−1(V ))

•|U // O(U),

since U ⊆ f−1(V ). Now since these maps commute with the restrictions on Y , we

get a unique morphism

lim−→
V ∈UY,f(U)

OY (V ) → O(U)

(see Definition 2.6.19). This map clearly defines a morphism of presheaves and,

therefore, there exists a unique morphism of sheaves

f−1OY → O.
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Definition 2.6.50.

(a) Let F be an O-module. Then f∗F is an f∗O-module and, by the map f#, also

an OY -module. We call f∗F the direct image of F under the morphism f .

(b) Let G be an OY -module. Then f−1G is an f−1OY -module. By the morphism

f−1OY → O of sheaves (see Remark 2.6.49) we define f∗G to be

f−1G ⊗f−1OY
O

and, hence, f∗G is an O-module called the inverse image of G under the mor-

phism f .
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Chapter 3

Algebraic Geometry

In this chapter we want to repeat all necessary definitions and results from algebraic

geometry, including results from the Theory of Schemes, about curves over fields

and rings and about representable group functors and group schemes.

3.1 Basic Affine and Projective Geometry

In this section we want to give basic definitions, like the affine space An(R) and

projective space Pn(R) over a ring R, the notion of being irreducible and what a

variety is. Moreover, we want to state fundamental results on An(R) and Pn(R), for

example their functoriality, the Zariski topology, relations of special hyperplanes,

projective closure of varieties etc. We begin by introducing affine and projective

space:

Definition 3.1.1. Let R be a ring. The affine n-space over R, denoted by An(R),

is the set of n-tuples of elements of R: hence, An(R) = Rn.

Definition 3.1.2. Let R be a ring. The projective n-space over R, denoted by

Pn(R), is the set of (n + 1)-tuples of elements of R which are primitive over R,

where two such tuples are identified if they differ by multiplication by a unit of R.

Thus

Pn(R) = {(a0, . . . , an) ∈ Rn+1 | 〈a0, . . . , an〉 = R}/ ∼,

where

(ai)i ∼ (bi)i ⇐⇒ ∃u ∈ R∗ : ai = ubi for i = 0, . . . , n.

We will write (a0 : · · · : an) for the equivalence class [(a0, . . . , an)]∼.

Note that we will call the elements of An(R) and Pn(R) points.

Remarks 3.1.3.

(a) It is easy to see that if R is a field, then this definition of the projective n-space

is the same as the usual one (see [Har77, pp. 8f, ch. I]), since then a (n+1)-tuple

is primitive if, and only if, at least one entry is non-zero.

(b) Note that (a0, . . . , an) ∈ Rn+1 generates a free R-module which is a direct

summand of Rn+1 if, and only if, (a0, . . . , an) is primitive over R.

(The proof of this can be found in the proofs of Lemma 2.4.20 and Lemma 2.4.21.)
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(c) Note that if (ai)i and (bi)i are two primitive tuples, then λ(ai)i = (bi)i for any

λ ∈ R implies (ai)i ∼ (bi)i.

(On the contrary, assume λ 6∈ R∗, which means 〈λ〉 $ R, and therefore λ(ai)i =

(λai)i cannot be primitive.)

The following lemma implies that An(•) and Pn(•) are functors from Ring to

Set:

Lemma 3.1.4. Let ϕ : R → S be a morphism of rings. Then ϕ induces natural

maps An(R) → An(S) and Pn(R) → Pn(S), defined by applying ϕ to the components

of the tuples.

Proof. This is clear for An(R) → An(S). If (a0, . . . , an) ∈ Rn+1 is primitive over

R, then 1 =
∑n

i=0 λiai for some λ ∈ R and, hence, 1 = ϕ(1) = ϕ(
∑
λiai) =∑

ϕ(λi)ϕ(ai) and, therefore, (ϕ(a0), . . . , ϕ(an)) ∈ Sn+1 is primitive over S. Since a

morphism of rings maps units onto units, two primitive tuples a, b ∈ Rn+1 satisfying

a ∼ b are mapped onto tuples a′, b′ ∈ Sn+1 satisfying a′ ∼ b′.

Next we want to give a criterion when two points in projective space are the

same:

Lemma 3.1.5. Let R be a ring and a = (a0 : · · · : an), b = (b0 : · · · : bn) ∈ Pn(R).

Then a = b if and only if aibj = ajbi for all 0 ≤ i < j ≤ n.

Proof. Assume a = b, i. e. there is a u ∈ R∗ such that ai = ubi, 0 ≤ i ≤ n. Then

clearly aibj = uaiaj = ajbi for all 0 ≤ i < j ≤ n.

Conversely, let aibj = ajbi, 0 ≤ i < j ≤ n. Clearly this holds for every 0 ≤ i, j ≤
n. We reduce to the case that R is local by localizing at every maximal ideal m of

R and using Corollary 2.2.10. But if R is local, a collections of elements if primitive

if and only if one is a unit. Assume ai is a unit. Then bj = ajbia
−1
i for every j and,

therefore, (bj)j = λ(aj)j for λ = bia
−1
i . But, following the above remarks, we then

have λ ∈ R∗ and, thus, a = b.

We want to define a topology on An(R) and Pn(R) for a certain class of rings R.

In the case R = R or R = C one has the classical topologies from analysis, but we

are not interested in these. The topology we will define is much coarser than the

classical topology, and it can be defined for every domain R.

Remark 3.1.6. Let R be a ring and f ∈ R[x0, . . . , xn] a homogenous polynomial.

If a = (a0 : · · · : an) ∈ Pn(R), then f(a) := f(a0, . . . , an)
?
= 0 is well-defined, as

f(λa0, . . . , λan) = λdf(a0, . . . , an), where d is the degree of f .

Definition 3.1.7. Let R be a ring and n ∈ N>0.

(a) Let a ⊆ R[x1, . . . , xn] be an ideal. The vanishing set of a over R is defined as

VR(a) = {a ∈ An(R) | f(a) = 0 for all f ∈ a}.

If f1, . . . , fm ∈ R[x1, . . . , xn] are polynomials, we also write VR(f1, . . . , fm) in-

stead of VR(〈f1, . . . , fm〉).
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(b) Let a ⊆ R[x0, . . . , xn] be a homogenous ideal. The vanishing set of a over R is

defined as

VR(a) = {a ∈ Pn(R) | f(a) = 0 for all homogenous f ∈ a}.

If f1, . . . , fm ∈ R[x0, . . . , xn] are homogenous polynomials, instead of writing

VR(〈f1, . . . , fm〉) we also write VR(f1, . . . , fm).

(c) Sets of the form VR(a) in (a) and (b) are called algebraic (sub-)sets.

Proposition 3.1.8. Let R be a domain and n ∈ N>0.

(a) If one takes the algebraic subsets of An(R) as the closed sets, one obtains a

topology on An(R).

(b) If one takes the algebraic subsets of Pn(R) as the closed sets, one obtains a

topology on Pn(R).

Definition 3.1.9. The topologies defined in the last proposition are called the Zariski

topologies on An(R) and Pn(R).

If from now on we speak of a topology on An(R) or Pn(R), we always mean the

Zariski topology. Next we want to characterize the connection between algebraic

sets and ideals.

Definition 3.1.10. Let R be a ring and n ∈ N>0.

(a) For any subset V ⊆ An(R) define

IR(V ) := {f ∈ R[x1, . . . , xn] | f(x) = 0 for all x ∈ V }.

(b) For any subset V ⊆ Pn(R) define

IR(V ) :=
〈
{f ∈ R[x0, . . . , xn]

h | f(x) = 0 for all x ∈ V }
〉
R[x0,...,xn]

.

Proposition 3.1.11. Let R be a ring and n ∈ N>0.

(a) (1) For any V ⊆ An(R), the set IR(V ) is an ideal in R[x1, . . . , xn].

(2) If V ⊆ An(R), then V ⊆ VR(IR(V )).

(3) If I ⊆ R[x1, . . . , xn], then I ⊆ IR(VR(I)).

(4) For V ⊆ An(R) we have V = VR(IR(V )) if and only if V is an algebraic

set.

(b) (1) For any V ⊆ Pn(R), the set IR(V ) is a homogenous ideal in R[x0, . . . , xn].

(2) If V ⊆ Pn(R), then V ⊆ VR(IR(V )).

(3) If I ⊆ R[x0, . . . , xn]
h, then I ⊆ IR(VR(I)).

(4) For V ⊆ Pn(R) we have V = VR(IR(V )) if and only if V is an algebraic set.

For algebraically closed fields there is a very beautiful characterization of alge-

braic sets, given by Hilbert’s Nullstellensatz.
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Theorem 3.1.12 (Hilbert’s Nullstellensatz). [Eis95, p. 34, Theorem 1.6] Let

F be an algebraically closed field and a an ideal in F[x1, . . . , xn]. Then

√
a = IF(VF(a)).

Hence, if f ∈ F[x1, . . . , xn] satisfies VF(a) ⊆ VF(f), then f ∈ √
a.

Corollary 3.1.13 (Projective Nullstellensatz). Let F be an algebraically closed

field and a a homogenous ideal in F[x0, . . . , xn], and let f ∈ F[x0, . . . , xn]
h satisfy

VF(a) ⊆ VF(f)

(a) If a does not contain F[x0, . . . , xn]+, then f ∈ √
a. Thus, in this case

√
a =

IF(VF(a)).

(b) If a contains F[x0, . . . , xn]+, then IF(VF(a)) = F[x0, . . . , xn].

Therefore, if a = IF(VF(a)), then f ∈ a.

Proof.

(a) Treat a as an inhomogenous ideal and f as an inhomogenous polynomial in

F[x1, . . . , xn+1]; then in affine space, V aff
F

(a) ⊆ V aff
F

(f), since

V aff
F

(a) = {(x1, . . . , xn+1) ∈ Fn+1 | (x1 : · · · : xn+1) ∈ V proj
F

(a)} ∪ {0}

(here we use that F[x0, . . . , xn]+ 6⊆ a), and the same for f . Therefore, Hilbert’s

Nullstellensatz 3.1.12 gives f ∈ √
a.

(b) Now assume F[x0, . . . , xn]+ ⊆ a. If for some a ∈ Fn+1 we have g(a) = 0 for

all g ∈ a, then a = 0; therefore V proj
F

(a) = ∅ and, hence, IF(VF(a)) = IF(∅) =

F[x0, . . . , xn].

Corollary 3.1.14. [Eis95, p. 36, Corollary 1.10] If F is an algebraically closed field,

the maps IF and VF give a one-to-one correspondence between algebraic subsets of

An(F) and radical ideals in F[x1, . . . , xn]. In particular we have VF(a) = ∅ for an

ideal a ⊆ F[x1, . . . , xn] if and only if a = F[x1, . . . , xn].

Moreover, the Nullstellensatz allows us to characterize the maximal ideals of

F[x1, . . . , xn], since they correspond to minimal algebraic sets in An(F), which are

points.

Corollary 3.1.15. [Eis95, p. 35, Corollary 1.9] Let F be an algebraically closed

field. Then the maximal ideals of F[x1, . . . , xn] have the form 〈x1 − a1, . . . , xn − an〉
for (a1, . . . , an) ∈ Fn.

Next we want to introduce the notion of being irreducible, and give a character-

ization of when an algebraic subset is irreducible.

Definition 3.1.16. A topological space X is called irreducible if X = A ∪ B with

closed sets A and B implies A = X or B = X. A subset of X is called irreducible

if it is irreducible as a topological space with the induced trace topology.
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Note that in topological spaces which are Hausdorff the only irreducible sets are

sets consisting of at most one point.

Proposition 3.1.17. Let R be a domain and X be either An(R) or Pn(R). Let Z

be a closed subset of X. If IR(Z) is prime, then Z is irreducible. If Z is irreducible

and R is an algebraically closed field, then IF(Z) is prime.

Proof. Note that to check whether a homogenous ideal is prime, it is enough to

check the homogenous elements (see Proposition 2.3.4).

First let IR(Z) be prime, and let U, V be closed sets such that Z = U ∪ V .

Then IR(U)IR(V ) ⊆ IR(U ∪ V ) = IR(Z). By Lemma 2.1.20 either IR(U) ⊆ IR(Z)

or IR(V ) ⊆ IR(Z). Assuming IR(U) ⊆ IR(Z), we get Z ⊇ U = VR(IR(U)) ⊇
VR(IR(Z)) = Z, i. e. Z = U .

For the other implication, assume Z is irreducible and that R = F is an al-

gebraically closed field. Let fg ∈ IF(Z). Then Z = VF(IF(Z)) ⊆ VF(fg) =

VF(f) ∪ VF(g), and as Z is irreducible, either Z ⊆ VF(f) or Z ⊆ VF(g). Assum-

ing Z ⊆ VF(f), by Hilbert’s Nullstellensatz (Theorem 3.1.12 or Corollary 3.1.13), we

get f ∈ IF(Z).

Now we come to define the notion of a variety.

Definition 3.1.18. Let F be an algebraically closed field and X be either An(F) or

Pn(F). An algebraic set V ⊆ X is called an affine, or projective variety if IF(V ) is

prime.

In the rest of this section we will mean either an affine or a projective variety if

we simply speak of a variety.

Definition 3.1.19. Let R be any ring and X either An(R) or Pn(R). Then an

algebraic set V ⊆ X is called a variety if for every maximal ideal m of R, the image

of V under the map induced from X to An(R/m) or Pn(R/m) by R → R/m is

the intersection of a variety with the image of the induced map. Here R/m is the

algebraic closure of R/m.

Now we will introduce hyperplanes and lines.

Definition 3.1.20. Let F be a field and n ∈ N>0. A hyperplane H in Pn(F) is the

complement of the zero set of a homogenous linear polynomial of degree one, i. e.

H = Pn(F) \ VF(f) with f =
∑n

i=0 aixi, (a0, . . . , an) ∈ Fn+1 \ {0}. If n = 2, then a

hyperplane is also called a line.

For i = 0, . . . , n let Hi be the hyperplane defined by xi, i. e. Hi = Pn(F) \ VF(xi).

Proposition 3.1.21. Let F be a field and n = 2. Let P = (x1 : y1 : z1), Q = (x2 :

y2 : z2) ∈ P2(F) with P 6= Q. Then the line through P and Q is given by the equation

(y1z2 − y2z1)x+ (z1x2 − z2x1)y + (x1y2 − x2y1)z = 0.

Proof. Since P 6= Q, by Lemma 3.1.5 the equation defines a line in P2(F). Moreover

plugging in (x1, y1, z1) and (x2, y2, z2) shows that P and Q satisfy this equation.
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Proposition 3.1.22. [Har77, p. 10, ch. I, Proposition 2.2] Let F be a field and

n ∈ N>0. Then there is a natural identification of Hi ⊆ Pn(F) with An(F), given by

(a0 : · · · : ai−1 : 1 : ai+1 : · · · : an) 7→ (a0, . . . , ai−1, ai+1, . . . , an).

Moreover:

(a) We have
⋃n
i=0Hi = Pn(F), i. e. Pn(F) can be covered with n+ 1 hyperplanes.

(b) The induced topology on An(F) from the Zariski topology on Pn(F) is again the

Zariski topology on An(F).

There is a close connection between varieties in projective space and varieties in

affine space which follows from this proposition. For this we need some properties

of irreducible spaces:

Lemma 3.1.23. Assume Z is an irreducible closed set in a topological space X,

and U an open set meeting Z. Then the following holds:

(1) The intersection Z ∩ U is dense in Z; and

(2) The intersection Z ∩ U is an irreducible closed subset in U .

Proof.

(1) Assume Z1 = Z ∩ U $ Z, and let Z2 = Z \ (Z ∩ U) = Z \ U ; then Z1 and Z2

are closed, and Zi 6= Z for both i. But Z = Z1 ∪ Z2 and, thus, Z is reducible.

(2) That Z ∩ U is closed in U is clear.

Assume Z ∩ U = (Z1 ∩ U) ∪ (Z2 ∩ U), where Z1, Z2 are closed in X and ∅ 6=
Zi ∩ U $ Z ∩ U for i = 1, 2. (I. e. Z ∩ U is a reducible closed subset in U .)

Let Ẑi := ({U ∪ Zi) ∩ Z. Then Ẑi is closed, since {U , Zi and Z are closed, and

Ẑi ⊆ Z, i = 1, 2. Further

Ẑ1 ∪ Ẑ2 = ({U ∪ Z1 ∪ Z2) ∩ Z = ({U ∪ ((Z1 ∪ Z2) ∩ U)) ∩ Z
= ({U ∪ (Z ∩ U)) ∩ Z = ({U ∪ Z) ∩ Z = Z.

But, as Ẑi ∩ U = Zi ∩ U $ Z ∩ U , we get Ẑi ∩ Z $ Z, i = 1, 2 and, thus, Z is

reducible.

Proposition 3.1.24. Let F be an algebraically closed field and n ∈ N>0.

(a) If V is an algebraic set in An(F), for every i there exists a unique algebraic set

V ′ in Pn(F) such that V is V ′ ∩Hi with the identification Hi = An(F) from the

last proposition. This set V ′ is called the projective closure of V .

(b) If V is an algebraic set in Pn(F) and 0 ≤ i ≤ n, then V ∩Hi is an algebraic set

in An(F). Moreover, if V ∩Hi 6= ∅ and V is a variety, the projective closure of

V ∩Hi is V .

(c) The projective closure of a variety is again a variety, and a variety in Pn(F)

intersected with Hi is again a variety in An(F).
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Proof. By using part (b) of the previous proposition it is enough to prove this

proposition as follows: let X be an irreducible topological space and Y ⊆ X a

irreducible subspace, where Y is X-open.

(a) If H ⊆ Y is a Y -closed set and H ′ = H
X

is the closure of H in X, then

H = H
Y

= H
X ∩ Y = H ′ ∩ Y .

(b) If H ⊆ X is X-closed, clearly H ∩ Y is Y -closed and H ∩ Y X ⊆ H
X

= H. Now

assume additionally that H is irreducible. Then Y ∩H is H-dense by part (b)

of the previous lemma, where H has the trace topology from X and, therefore,

H ⊆ Y ∩HX
.

(c) If H ⊆ Y is irreducible, clearly so is H
X

. And if H ⊆ X is irreducible, so is

H ∩ Y by part (b) of the previous lemma.

Corollary 3.1.25. Let F be an algebraically closed field. Any projective variety

over F can be covered by a finite number of affine varieties.

Finally we want to use another property which Pn(R) and An(R) have for certain

domains R.

Definition 3.1.26. Let X be a topological space.

(a) We call X Noetherian if every ascending chain of open subsets eventually be-

comes stationary.

(b) Let U ⊆ X be a closed subset. An irreducible closed subset C ⊆ U is called an

irreducible component of U if for every irreducible closed subset C ′ ⊆ U such

that C ⊆ C ′, we already have C = C ′.

Proposition 3.1.27. [Har77, p. 5, ch. I, Proposition 1.5] In a Noetherian topolog-

ical space every closed subset can be written as the finite union of pairwise distinct

of irreducible components of itself. This decomposition is unique.

Corollary 3.1.28. Let R be a Noetherian domain. Then every algebraic set in

An(R) and Pn(R) can be uniquely written as the finite union of its irreducible com-

ponents.

Proof. By the Hilbert Basis Theorem (Proposition 2.0.6 (b)), R[x1, . . . , xn] and

R[x0, . . . , xn] are Noetherian. If V1 ⊆ V2 ⊆ V3 ⊆ · · · is an ascending chain of

open subsets of X = An(R) or X = Pn(R), it corresponds to an ascending chain of

ideals IR(X \ V1) ⊆ IR(X \ V2) ⊆ · · · ; this chain will eventually become stationary,

and since Vi = X \ VR(IR(X \ Vi)) so will become the chain V1 ⊆ V2 ⊆ · · · .

3.2 Varieties over Algebraically Closed Fields

In this section we want to discuss varieties over algebraically closed fields. We

have already seen that in this case varieties have especially good properties. We

first want to give some definitions and results for affine and projective varieties,

before we introduce regular functions on varieties. Regular functions play the role
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of differential functions f : X → R on manifolds X in differential geometry. Then

we define morphisms between varieties and rational maps between varieties. Finally

we define when a variety is smooth, give a criterion for smoothness, and state the

Theorem of Bézout, which will be important to define a geometric group law on

elliptic curves in Section 4.2.2.

Let F always be an algebraically closed field in this section.

3.2.1 Affine Varieties

We first want to discuss affine varieties. Let therefore V = VF(a) be an affine variety,

a = 〈f1, . . . , fn〉. We have already seen that V = VF(
√

a) and IF(V ) =
√

a, and that√
a is prime.

Definition 3.2.1. Define the affine coordinate ring of V , denoted by F[V ], to be

F[x1, . . . , xn]/IF(V ).

Remark 3.2.2. By the above remark F[V ] is a domain.

Elements of F[V ] can be seen as functions on V , since every polynomial in IF(V )

vanishes on V . We will see in Proposition 3.2.17 how F[V ] is connected to the set

of regular functions on V .

We define the dimension of an affine variety as follows:

Definition 3.2.3. The dimension of V , denoted by dimV , is the dimension of V

as a topological space, i. e. the supremum of the lengths of all chains of irreducible

subsets.

Remark 3.2.4. We have dimV = ht IF(V ) = dim F[V ].

Varieties of dimension n− 1 in An(F) can be characterized as follows:

Proposition 3.2.5. [Har77, p. 7, ch. I, Proposition 1.13] An affine variety in An(F)

has dimension (n − 1) if, and only if, it is defined by one non-constant irreducible

polynomial in F[x1, . . . , xn].

3.2.2 Projective Varieties

Next we want to discuss projective varieties. For this let V = VF(a) be a projective

variety, a = 〈f1, . . . , fn〉. We have already seen that V = VF(
√

a) and IF(V ) =
√

a,

and that
√

a is prime.

Definition 3.2.6. Define the homogenous coordinate ring of V , denoted by F[V ],

to be F[x0, . . . , xn]/IF(V ).

The homogenous coordinate ring is also a domain. It is also an F[x0, . . . , xn]-

algebra, and hence the following definition makes sense:

Definition 3.2.7. Define the Hilbert polynomial of V , denoted by PV , as the Hilbert

polynomial of F[V ] seen as an F[x0, . . . , xn]-module.
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The Hilbert polynomial will be needed later to define the degree of a projective

variety of dimension n − 1 in Pn(F). The degree will be important to state the

Theorem of Bézout which characterizes the intersection of two such varieties in

P2(F). For a projective variety the dimension can be defined in the same manner as

for affine varieties:

Definition 3.2.8. The dimension of V , denoted by dimV , is the dimension of V

as a topological space.

3.2.3 Regular Functions

To define morphisms between varieties we first want to define what kind of functions

defined on a variety are of interest, since we want that such functions, concatenated

with a morphism of varieties, are again functions defined on the other variety. We

are interested in functions which ‘locally look like fractions of polynomials’.

Definition 3.2.9. A quasi-affine or quasi-projective variety is an open subset of

an affine or projective variety, respectively.

Definition 3.2.10.

(a) Let V ⊆ An(F) be a quasi-affine variety and x ∈ V a point. A function f : V →
F is regular at x if there is a neighborhood U ∈ UV,x and polynomials g, h ∈
F[x1, . . . , xn] such that f(y) = g(y)

h(y) for all y ∈ U . If f is regular at any x ∈ V ,

we say that f is regular on V .

(b) Let V ⊆ Pn(F) be a quasi-projective variety and x ∈ V a point. A function f :

V → F is regular at x if there is a neighborhood U ∈ UV,x and homogenous

polynomials g, h ∈ F[x0, . . . , xn] of the same degree such that f(y) = g(y)
h(y) for all

y ∈ U . If f is regular at any x ∈ V , we say that f is regular on V .

The regularity of a function implies that it is continuous:

Proposition 3.2.11. [Har77, p. 15, ch. I, Lemma 3.1] Let f : V → F be a regular

function, where V is quasi-affine or quasi-projective. Then f is continuous with

respect to the Zariski topology when seen as a function V → A1(F).

As a variety is irreducible we get the following corollary:

Corollary 3.2.12. Let f, g : V → F be regular. If f = g on a non-empty open

subset of V , then f = g everywhere on V .

Definition 3.2.13. A variety over F is an affine, quasi-affine, projective or quasi-

projective variety over F.

We next want to define and describe the structure sheaf of a variety. We are also

interested in regular functions that are only defined on a non-empty open subset;

they can be thought of as rational functions on a variety.

Definition 3.2.14. Let V be a variety. Define the structure sheaf OV on V as

follows: for every open subset U ∈ UV , let OV (U) be the set of regular functions f :

U → F. (Note that U is quasi-affine or quasi-projective.)
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Proof. It is clear that this gives a pre-sheaf. Since the elements of the rings OV (U)

are functions U → F, and the condition for an arbitrary function f : U → F to be

inside OV (U) is local, OV is obviously a sheaf.

Definition 3.2.15. Let V be a variety. Define the function field F(V ) to be the set

of equivalence classes of pairs 〈U, f〉, where U ∈ UV is non-empty and f : U → F is

regular, and 〈U, f〉 and 〈V, g〉 are identified if f |U∩V = g|U∩V .

Proposition 3.2.16. If V is a variety, then F(V ) is a field, where the operations

are defined as follows:

〈U, f〉 + 〈V, g〉 = 〈U ∩ V, f |U∩V + g|U∩V 〉 ;

and 〈U, f〉 · 〈V, g〉 = 〈U ∩ V, f |U∩V · g|U∩V 〉 .

Proof. Note that if U,W ∈ UV are non-empty, we have U∩W 6= ∅ as V is irreducible.

Moreover, if f : U → F is regular but not constantly zero, then {f 6= 0} := V \VF(f)

is non-empty and open and, therefore, 1/f is defined and regular on the open non-

zero set U ∩ {f 6= 0}.

We can now describe the structure sheaf and the function field of affine and

projective varieties:

Proposition 3.2.17. [Har77, p. 17, ch. I, Theorem 3.2] Let V ⊆ An(F) be an affine

variety, and let A = F[V ] be the affine coordinate ring.

(a) Then A ∼= Γ(V,OV ).

(b) For x ∈ V let mx be the ideal of functions f ∈ A vanishing at x. Then x 7→ mx

gives a one-to-one correspondence between the points of V and the maximal

ideals of A.

(c) For x ∈ V we have that OV,x
∼= Amx and dimOV,x = dimV .

(d) The function field F(V ) is isomorphic to the field of fractions of A. There-

fore F(V ) is a finitely generated extension field of F, having transcendence de-

gree tr. deg.F F(V ) = dimV by Remarks 2.3.24 (b).

Proposition 3.2.18. [Har77, p. 18, ch. I, Theorem 3.4] Let V ⊆ Pn(F) be a

projective variety, and let A = F[V ] be the homogenous coordinate ring.

(a) Then Γ(V,OV ) = F.

(b) For x ∈ V let mx be the ideal generated by the homogenous polynomials f ∈ A

vanishing at x. Then mx is prime and OV,x
∼= A(mx).

(c) We have F(V ) ∼= A(〈0〉).
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3.2.4 Morphisms between Varieties

Now we will define what a morphism between two varieties is and state some results

on morphisms.

Definition 3.2.19. Let X and Y be varieties over F. A morphism of varieties f :

X → Y is a continuous map such that for every regular function ϕ : V → F,

V ∈ UY , the function ϕ ◦ f : f−1(V ) → F is regular.

Remark 3.2.20. The varieties over F with the morphisms from Definition 3.2.19

form a category, denoted by Var(F).

With this definition we can enhance Proposition 3.1.22:

Proposition 3.2.21. [Har77, p. 18, ch. I, Proposition 3.3] Let Hi ⊆ Pn(F) be the

hyperplanes defined by xi 6= 0, 0 ≤ i ≤ n. Then the maps ϕi : Hi → An(F) from

Proposition 3.1.22 are isomorphisms of varieties.

Next we state a result on what morphisms to affine varieties look like. This helps

to describe morphisms to projective varieties by the use of Propositions 3.1.22 and

3.2.21.

Proposition 3.2.22. [Har77, p. 19, ch. I, Proposition 3.5] Let X be any variety

and Y be an affine variety. Then there exists a natural bijective map

HomVar(F)(X,Y ) → HomF-A lg(F[Y ],Γ(X,OX)).

If we restrict our attention to affine varieties, we get the following equivalence of

categories:

Corollary 3.2.23. [Har77, p. 20, ch. I, Corollary 3.8] The contravariant functor

Var(F) → F-A lg, X 7→ F[X]

induces an equivalence of categories between the category of affine varieties over F
and the category of finitely generated domains over F.

Similarly to Corollary 3.2.12 we get the following result for morphisms:

Proposition 3.2.24. [Har77, p. 24, ch. I, Lemma 4.1] Let X and Y be varieties,

and f, g : X → Y morphisms such that f = g on a non-empty open subset of X.

Then f = g on all of X.

3.2.5 Rational Maps between Varieties

Since morphisms are somehow well-behaved in that they are defined for every point,

in some situations one wants to deal with maps which look at almost every point as

a morphism.

Definition 3.2.25. Let X and Y be varieties.

(a) If U, V ∈ UX and f : U → Y , g : V → Y are morphisms, we say 〈U, f〉 and

〈V, g〉 are equivalent if f = g on U ∩ V .
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(b) A rational map ϕ : X → Y is an equivalence class of such pairs 〈U, f〉.

(c) A rational map ϕ : X → Y is dominant if for one pair 〈U, f〉 belonging to ϕ,

the image f(U) is Zariski-dense in Y .

Remarks 3.2.26.

(a) If ϕ : X → Y is a rational map such that for every x ∈ X there is a representative

〈U, f〉 with x ∈ U , then one representative of ϕ is a morphism X → Y . In this

case we treat ϕ itself as a morphism.

(b) Note that if ϕ : X → Y is rational and 〈U, f〉 and 〈V, g〉 are representatives of

ϕ, then f(U) is dense if, and only if, g(V ) is dense in Y .

(c) Comparing with Definition 3.2.15, one sees that the functions in the function

field of a variety X are exactly the rational functions X → A1(F).

3.2.6 Smoothness

As in differential geometry, one is especially interested in objects without singulari-

ties. As there are no differential forms defined a priori in affine or projective space

over an arbitrary algebraically closed field, we need to find another definition. It

turned out that the notion of being regular reflects what we want:

Definition 3.2.27. Let V be a variety and x ∈ V . Then V is smooth at x if OV,x

is a regular local ring. If V is smooth at every point, we say V is smooth.

Clearly this definition is not useful for checking whether a variety is smooth. We

now want to state a very important criterion for smoothness:

Theorem 3.2.28. [Har77, p. 32, ch. I, Theorem 5.1] Let V ⊆ An(F) be an affine

variety and x ∈ V . Let f1, . . . , fm be generators for the ideal IF(V ). Then V is

smooth at x if, and only if,

rank
(
∂fi

∂xj
(x)
)

1≤i≤m
1≤j≤n

= n− dimV.

Remarks 3.2.29.

(a) Note that whether V is smooth at x or not does not depend on either which

generators fi are chosen or on how V is embedded in An(F).

(b) The matrix
(
∂fi

∂xj
(x)
)
ij

is called the Jacobian matrix of V at x.

We will use this criterion later to characterize which cubic curves of a special

form defined over an algebraically closed field are smooth.
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3.2.7 Theorem of Bézout

The Theorem of Bézout describes the intersection set between a variety in P2(F)

and a hypersurface. An important special case is the intersection of a hypersurface

and a line: Bézout’s theorem states for this case that the intersection consists of

exactly d points, where d is the degree of the variety. But first we want to define

what a hypersurface is and what the degree of a projective variety is.

Definition 3.2.30. [Har77, p. 52, ch. I]

(a) Let X ⊆ Pn(F) be a projective variety and PX the Hilbert polynomial of X having

degree r and leading coefficient c. Then the degree of X is c · r!.

(b) A hypersurface is a projective variety generated by one polynomial.

Proposition 3.2.31. [Har77, p. 52, ch. I, Proposition 7.6] The degree of a non-zero

projective variety is a positive integer. Moreover, if V is a variety defined by one

homogenous polynomial of degree d, then the degree of V is d.

Next we want to give the definition of the intersection multiplicity between a

projective variety and a hypersurface.

Definition 3.2.32.

(a) [Har77, p. 51, ch. I] Let S = F[x0, . . . , xn], M be a graded S-module and p

be a minimal prime of S, i. e. a minimal element of AssF[x0,...,xn](M). Let the

multiplicity of M at p, denoted by µp(M), be the length of the F[x0, . . . , xn]p-

module Mp.

(b) [Har77, p. 53, ch. I] Let X ⊆ Pn(F) be projective variety, Y ⊆ Pn(F) a hyper-

surface, and Z an irreducible component of X ∩Y . Define the intersection mul-

tiplicity of X and Y at Z, denoted by iX,Y (Z), as µIF(Z)(F[x0, . . . , xn]/(IF(X)+

IF(Y ))).

Now we can state Bézout’s Theorem:

Theorem 3.2.33 (Bézout). [Har77, p. 54, ch. I, Corollary 7.8] Let X and Y be

hypersurfaces in P2(F), where X has degree n and Y has degree m. Let Z1, . . . , Z`

be the irreducible components of X ∩ Y . Then the Zi are points and

∑̀

i=1

iX,Y (Z) = n ·m.

3.3 Schemes

In this section we want to introduce schemes and give first properties. More advanced

definitions and results from scheme theory are given in the next two sections.

Schemes are a generalization of varieties, which allow to model changes of the

base field or ring and especially the locality of many geometric notions. Unfortu-

nately, the definition of a scheme is quite complicated. We begin by introducing
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the spectrum of the ring and the category of locally ringed spaces, and define an

affine scheme. As the name hints, affine schemes generalize affine varieties. A gen-

eral scheme is a locally ringed space that locally ‘looks like’ an affine scheme. More

about the motives of why schemes were introduced can be found in the book [EH00].

After that we describe another construction, which in a certain sense generalizes

projective varieties. In the next section we will see another generalization.

Introductive books on the Theory of Schemes are [Har77], [Iit82] and [EH00].

The latter tries to mediate the geometric side of schemes, while the first two provide

a rigorous introduction to the Theory of Schemes, not requiring any requisites from

algebraic geometry. Most of the information from this and the next three sections

can be found in these books.

3.3.1 Spectrum of a Ring

Let R be a ring in the following. Recall that by a ring we always mean a commutative

ring with a unit.

In Definition 2.3.36 we defined SpecR, and now we want to restate this definition:

Definition 3.3.1. Define

SpecR := {p ⊆ R | p prime ideal of R}

to be the spectrum of R.

Next we define a topology on SpecR. It is related to the Zariski topology from the

previous section, as for an algebraically closed field F we have a bijection of algebraic

sets in An(F) and radical ideals in F[x1, . . . , xn] by Hilbert’s Nullstellensatz.

Definition 3.3.2. For any ideal a ⊆ R, let V (a) := {p ∈ SpecR | a ⊆ p}. Moreover,

for any f ∈ R, define D(f) := SpecR \ V (〈f〉).

Proposition 3.3.3. [Har77, p. 70, ch. II, Lemma 2.1 and p. 80, ch. II, Exer-

cise 2.13(c)] The sets of the form V (a) form the closed sets of a topology on SpecR,

called the Zariski topology. The following properties hold:

(1) We have V (a) ⊆ V (b) if, and only if,
√

a ⊇
√

b. This implies V (a) = V (b) if,

and only if,
√

a =
√

b.

(2) We have that

⋂

i∈I
V (ai) = V

(∑

i∈I
a

)
and

n⋃

i=1

V (ai) = V

(
n∏

i=1

ai

)
.

(3) The open sets D(f), f ∈ R form a basis of the topology.

(4) The topological space SpecR is compact1.

(5) It is dim SpecR = dimR, where dim SpecR is the dimension of SpecR as a

topological space.

1A topological space X is compact if for every open cover (Ui)i∈I of X, where I is an arbitrary

index set, there exists a finite subset J ⊆ I such that
S

i∈J Ui = X.
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We now define a sheaf of rings over SpecR, which will generalize the sheaf of

regular functions for affine varieties.

Definition 3.3.4. Define a sheaf of rings O on the topological space SpecR as

follows: for an open set U , let O(U) be the set of functions s : U → ∐
p∈U Rp such

that s(p) ∈ Rp for every p ∈ SpecR, and such that s is locally a quotient of elements

of R. Or formulated differently,

O(U) :=

{
(s(p))p∈U ∈

∏

p∈U
Rp

∀p ∈ U ∃V ∈ UU,p ∃r, s ∈ R

∀q ∈ V : s 6∈ q and s(q) = r
s ∈ Rq

}
.

The restriction maps are the obvious ones. We call O the structure sheaf of SpecR.

Proof. It is easy to see that the property is local, and since it is also obvious that the

difference and the product of two elements of O(U) is again in O(U), one directly

sees that O is a sheaf of rings.

Proposition 3.3.5. [Har77, p. 71, ch. II, Proposition 2.2] Let R be a ring, and O
the structure sheaf on SpecR.

(1) If p ∈ SpecR, then Op is isomorphic to Rp. Hence Op is a local ring for

every p ∈ SpecR.

(2) If f ∈ R, then O(D(f)) is isomorphic to Rf . In particular Γ(SpecR,O) ∼= R.

We will later see that if V ⊆ An(F) is a variety defined by an ideal a over an

algebraically closed field F, then Spec F[x1, . . . , xn]/a corresponds to V .

3.3.2 Locally Ringed Spaces

Recall the definition of a ringed space: it is a topological space X together with

a sheaf of rings OX on X. A morphism of ringed spaces (X,OX) and (Y,OY ) is

a pair (f, f#) where f : X → Y is a continuous map and f# : OY → f∗OX is

a morphism of sheaves. We next want to introduce the notion of a locally ringed

space, which, together with spectra of rings, is enough to define what a scheme is.

Definition 3.3.6. Let R,S be two local rings with maximal ideals mR,mS, respec-

tively, and ϕ : R → S is a ring morphism. Then ϕ is called a local morphism if

ϕ(mR) ⊆ mS.

Definition 3.3.7. A ringed space X is called a locally ringed space if for every p ∈
X we have that the stalk OX,p is a local ring. If X and Y are locally ringed spaces

and f : X → Y is a morphism of ringed spaces, then f is called a morphism of

locally ringed spaces if for every p ∈ X the induced map f#
p : OY,f(p) → OX,p is a

local morphism.

With these definitions we can form the category of locally ringed spaces.

Now we show more properties of SpecR, including that it gives a contravariant

functor from Ring into the category of locally ringed spaces:
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Proposition 3.3.8. [Har77, p. 73, ch. II, Proposition 2.3] Let R and S be rings.

(1) If O is the structure sheaf of SpecR, then (SpecR,O) is a locally ringed space.

In the future we will simply write SpecR for (SpecR,O).

(2) If ϕ : R→ S is a ring morphism, then this induces a morphism of locally ringed

spaces f : SpecS → SpecR.

(3) If f : SpecS → SpecR is a morphism of locally ringed spaces, then there exists

a ring morphism ϕ : R→ S which induces f as in (b).

Moreover, idR induces idSpecR, and if T is another ring and R
ϕ→ S

ψ→ T are ring

morphisms, then the induced morphisms f of ϕ, g of ψ and h of ψ◦ϕ fulfill h = f ◦g:

R ϕ
//

ψ◦ϕ

%%

��

S
ψ

//

��

T

��
SpecR SpecS

foo SpecT
goo

h=f◦g

ff

Therefore Spec • is a contravariant, fully faithful functor from the category of com-

mutative rings with a unit to the category of locally ringed spaces.

Before we continue with the definition of a scheme in the next subsection, we

want to recall the following topological definitions:

Definition 3.3.9. Let X be a topological space.

(1) A point x ∈ X is called a closed point if {x} = {x}.

(2) Let Z be an irreducible closed subset of X. A generic point for Z is a point x ∈ Z,

such that {x} = Z.

Remarks 3.3.10. In SpecR, the closed points are exactly the maximal ideals. The

irreducible subsets and their generic points are characterized later in Lemma 3.3.33.

3.3.3 Schemes

Now we are finally able to define what a scheme is:

Definition 3.3.11.

(1) An affine scheme is a locally ringed space X such that X is isomorphic as a

locally ringed space to SpecR for some ring R.

(2) A scheme X is a locally ringed space such that every p ∈ X has an open neigh-

borhood U such that (U,OX |U ) is an affine scheme.

(3) A morphism of schemes f : X → Y for two schemes X,Y is a morphism of

locally ringed spaces.

86
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With these definitions we can form the category of schemes and its full subcat-

egory of affine schemes.

Remark 3.3.12. If R is a ring, then SpecR is an (affine) scheme.

Definition 3.3.13. Let R be a ring. Define the affine n-space over R as An
R :=

SpecR[x1, . . . , xn].

We will see in Section 3.6 how this definition is related to the previous definition

of affine n-space over R, namely An(R).

We can now define the notion of a scheme over a base scheme, and that of a

scheme-theoretic point.

Definition 3.3.14. Let S be any scheme. An S-scheme is a tuple (X, f) where X is

a scheme and f : X → S is a morphism. If f is clear from the context, one can also

simply say that X is an S-scheme, or that X is a scheme over S. The morphism f

is also called the structure morphism of X over S. If (Y, g) is another S-scheme,

then a morphism of schemes h : X → Y is a morphism of S-schemes if g ◦ h = f .

If X and Y are S-schemes, then an Y -rational point or section of X (over Y ) is

an S-morphism Y → X. The set of all S-rational points of X is denoted by X(S). A

geometric point of X is a morphism Spec F → X for an algebraically closed field F.

If S = SpecR for a ring R, one also speaks of schemes over R, R-morphisms

and R-rational points.

Note that with this definition we have two kinds of points for a scheme X/S: its

points p ∈ X of the topological space, and its S-rational points. In some cases certain

subsets of these points can be identified (see Section 3.6 for more information).

Remark 3.3.15. If R is a ring, then An
R is in a natural way an R-scheme.

The next remark will allow us to draw a connection between An
R(R) = An

R(SpecR)

and An(R). A closer connection will be given in Section 3.6.

Proposition 3.3.16. [Har77, p. 79, ch. II, Exercise 2.4] Let R be a ring, n ∈
N>0 and X a scheme over R. Then there is a one-to-one correspondence of R-

morphisms X → An
R and R-linear ring morphisms R[x1, . . . , xn] → Γ(X,OX) =

OX(X). To be more exact,

Hom(X,An
R) ∼= HomR(R[x1, . . . , xn],Γ(X,OX)).

Here Γ(X,OX) has the structure of an R-algebra given by the structure morphism

of X over R.

If R is a ring and M an R-module, we have seen that SpecR encapsulates the

global and local information of R. To encapsulate the global and local information

of M in a similar way, we need the following definition:
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Definition 3.3.17. Let R be a ring, X = SpecR and M an R-module. Define

M̃(U) :=

{
(s(p))p∈U ∈

∏

p∈U
Mp

∀p ∈ U ∃V ∈ UU,p ∃r ∈M, s ∈ R

∀q ∈ V : s 6∈ q and s(q) = r
s ∈Mq

}
.

With the obvious restriction maps this defines a sheaf M̃ : U 7→ M̃(U), called the

sheaf associated to M .

Proposition 3.3.18. [Har77, p. 110, ch. II, Proposition 5.1] Let R be a ring, M

an R-module and X = SpecR.

(a) Then M̃ is an OX-module.

(b) Moreover M̃p
∼= Mp for every p ∈ SpecR.

(c) We have Γ(X, M̃) = M .

As schemes are locally ringed spaces that locally look like spectra of rings, we

are especially interested in OX -modules that locally look like sheaves associated to

modules:

Definition 3.3.19. Let X be a scheme and F an OX-module. Then F is quasi-

coherent if X can be covered by open affine U = SpecR, such that F|U ∼= M̃ for

some R-module M .

3.3.4 Projective Spectrum

We next want to define a construction which generalizes the construction of pro-

jective varieties. Recall that for projective varieties graded rings play an important

role. We begin with describing the equivalent of SpecR for graded rings and defining

the Zariski topology in a similar way.

Definition 3.3.20. Let S be a graded ring. Define

ProjS := {p ⊆ S | p prime and homogenous, S+ 6⊆ p}

as the projective spectrum of S.

Definition 3.3.21. Let S be a graded ring and a a homogenous ideal in S. Define

V (a) := {p ∈ ProjS | pa ⊆ p}.

If f ∈ S is homogenous, define

D+(f) := ProjS \ V (〈f〉).

Proposition 3.3.22. [Har77, p. 76, ch. II, Lemma 2.4 and p. 76, ch. II, Propo-

sition 2.5] The sets of the form V (a) form the closed sets of a topology on ProjS,

called the Zariski topology. The following properties hold:

(1) We have that

⋂

i∈I
V (ai) = V

(∑

i∈I
a

)
and

⋃

i∈I
V (ai) = V

(
n∏

i=1

ai

)
.
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(2) The D+(f), f ∈ S+ homogenous, form a basis of the topology.

(3) It is dim ProjS = dimh S.

We next want to associate a structure sheaf to ProjS in a similar way as for

SpecR:

Definition 3.3.23. Let S be a graded ring. Define the structure sheaf of ProjS by

O(U) :=

{
(s(p))p∈U ∈

∏

p∈U
S(p)

∀p ∈ U ∃V ∈ UU,p ∃r, s ∈ Sh

∀q ∈ V : s 6∈ q and s(q) = r
s ∈ S(q)

}
.

The restriction maps are the obvious ones.

Proof. Again it is easy to see that this is a sheaf of rings on ProjS.

Proposition 3.3.24. [Har77, p. 76, ch. II, Proposition 2.5] Let S be a graded ring,

and let O be the structure sheaf of ProjS.

(1) For any p ∈ ProjS we get an isomorphism Op
∼= S(p). Therefore Op is a local

ring.

(2) For every homogenous f ∈ S+ we have that (D+(f),O|D+(f)) is isomorphic as

a locally ringed space to SpecS(f).

(3) The locally ringed space (ProjS,O) is a scheme.

We will now define projective space over a ring in a scheme theoretic way. Again

we will not see the connection to Pn(R) from Section 3.1 yet, but later in Section 3.6.

Definition 3.3.25. Let R be a ring and n ∈ N>0. Define the projective n-space

over R as PnR := ProjR[x0, . . . , xn].

If S is a graded ring which is an R-algebra, the following lemma allows us to see

ProjS as an R-scheme:

Lemma 3.3.26. [Iit82, p. 165] Let S be a graded ring and R = S0. Then there is

a natural map f : ProjS → SpecR.

If S is a graded ring and M a graded S-module, we again are interested in a

similar construction for M over ProjS as in the previous section for modules over

arbitrary rings.

Definition 3.3.27. Let S be a graded ring, X = ProjS and M a graded S-module.

Define

M̃(U) :=

{
(s(p))p∈U ∈

∏

p∈U
M(p)

∀p ∈ U ∃V ∈ UU,p ∃r ∈Mh, s ∈ Sh

∀q ∈ V : s 6∈ q and s(q) = r
s ∈M(q)

}
.

With the obvious restriction maps this defines a sheaf M̃ : U 7→ M̃(U), called the

sheaf associated to M .
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Proposition 3.3.28. [Har77, pp. 116f, ch. II, Proposition 5.11] Let S be a graded

ring, M a graded S-module, and X = ProjS.

(a) Then M̃ is a quasi-coherent OX-module.

(b) For any p ∈ X we have M̃p
∼= M(p).

(c) If f ∈ Sh+, then M̃ |D+(f)
∼= M̃(f).

In Definition 2.3.11 we defined the twist of a graded module. We will now

define a similar concept for sheaves of modules over OX . We will later need this to

characterize the R-rational points of ProjS.

Definition 3.3.29. Let S be a graded ring and X = ProjS, and let z ∈ Z.

(a) Define OX(z) to be S̃(z).

(b) If F is a sheaf of OX-modules, define F(z) := F ⊗OX
OX(z).

Proposition 3.3.30. [Har77, p. 117, ch. II, Proposition 5.12] Let S be a graded

ring, X = ProjS, and assume that S is generated by S1 as an S0-algebra.

(a) The sheaf OX(z) is an invertible sheaf for every z ∈ Z.

(b) If M is a graded S-module, then M̃(z) = M̃(z) for any z ∈ Z.

(c) For z, w ∈ Z we have OX(z)⊗OX
OX(w) ∼= OX(z + w).

For later use we need the following proposition, which gives us information about

the global sections of the twisted sheaf OPn
R
(k):

Proposition 3.3.31. Let R be a ring and n ∈ N, k ∈ Z. Then (OPn
R
(k))(PnR) =

R[x0, . . . , xn]k.

Proof. For n = 0 note that D+(x0) = P0
R. We therefore assume n > 0.

Let s ∈ (OPn
R
(k))(PnR), and consider Ui = D+(xi). By Proposition 3.3.28 (c) we

have s|Ui = fi

x
di
i

for some fi ∈ R[x0, . . . , xn](k)di and di ∈ N. Moreover consider Uij =

D+(xixj) ⊆ D+(xi) ∩D+(xj). Thus,

s|Uij =
fix

di
j

(xixj)di
=

fjx
dj

i

(xixj)dj
∈ R[x0, . . . , xn](xixj).

But as xixj is a non-zero-divisor, this means that

fjx
dj

i (xixj)
di = fix

di
j (xixj)

dj ,

and as xi, xj are non-zero-divisors, we get fjx
di
i = fix

dj

j . By choosing i 6= j we see

that fi = f̃ix
di
i with a homogenous f̃i ∈ R[x0, . . . , xn]k for every i and, therefore,

s|D+(xi) =
f̃i
x0
i

∈ R[x0, . . . , xn](k)(xi)

and, moreover, f̃i = f̃j for all i, j.
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3.3.5 First Properties of Schemes

Before closing this section we want to state some first properties of schemes. The

first results give information on the topological space of a scheme and about its

irreducible subsets:

Lemma 3.3.32. [Iit82, p. 13, Proposition 1.5] The topological space of a scheme is

T0, i. e. for every two distinct points there exists an open set containing one but not

the other.

Lemma 3.3.33. [Iit82, p. 16, Proposition 1.8] The irreducible closed subsets of

SpecR are exactly the sets of the form V (a), where a ⊆ R is an ideal such that√
a is prime. In that case {√a} equals the irreducible closed subset. Hence the

irreducible subsets are exactly the ones of the form V (p), where p ∈ SpecR.

Lemma 3.3.34. [Har77, p. 80, ch. II, Exercise 2.9] If X is a scheme, then every

non-empty irreducible closed subset has a unique generic point.

The connectedness of an affine scheme can be characterized as follows:

Lemma 3.3.35. [Har77, p. 82, ch. II, Exercise 2.19] Consider the topological

space S = SpecR for a ring S. Then the following are equivalent:

(i) It is R = R1 ×R2 for two non-zero rings R1, R2; and

(ii) The topological space S is disconnected, i. e. it contains a non-trivial proper

subset U which is both open and closed.

If R =
∏n
i=1Ri is an Artinian ring with its decomposition into local Artinian

rings, the lemma says that SpecR consists of n points, each corresponding to a

maximal ideal mi of an Ri. Moreover, SpecR can be seen as the disjoint union of

the SpecRi’s.

We next want to define some useful properties schemes can have.

Definition 3.3.36. Let X be a scheme.

(a) Then X is integral if all rings OX(U), U ∈ UX are domains.

(b) The scheme X is reduced if all rings OX(U), U ∈ UX are reduced.

(c) The scheme X is regular if all local rings OX,x, x ∈ X are regular local rings.

(d) The scheme X is irreducible if its topological space X is irreducible.

(e) The scheme X is connected if its topological space X is connected.

Proposition 3.3.37. [Har77, p. 82, ch. II, Proposition 3.1] A scheme is integral

if, and only if, it is reduced and connected.

Definition 3.3.38. Let X be a scheme.

(a) We call X locally Noetherian if X can be covered by open affine subsets SpecAi

such that every Ai is a Noetherian ring.

(b) We call X Noetherian if it is locally Noetherian and compact.

If R is a Noetherian ring, then clearly SpecR is Noetherian.
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3.4 Morphisms of Schemes

In this section we want to present several results and constructions for morphisms

of schemes, and further define and describe properties of morphisms.

3.4.1 Fibred Products

The first, very important construction is the fibred product of two S-schemes. It

can also be seen as the product of two morphisms with the same destination.

Definition 3.4.1. Let X and Y be schemes over a base scheme S. The fibred

product of X and Y over S is an S-scheme X×SY with S-morphisms fX : X×SY →
X and fY : X×SY → Y , such that for every scheme Z and S-morphisms g : Z → X

and h : Z → Y , there exists a unique morphism Z → X×SY , such that the following

diagram commutes:

Z g

""

h

%%

∃!

$$H
H

H
H

H

X ×S Y fX

//

fY

��

X

��
Y // S

Remarks 3.4.2.

(a) Note that by the universal property of the fibred product, it is unique up to a

unique isomorphism, if it exists. Therefore, it is justified to speak of the fibred

product.

(b) Since Spec Z is the final object in the category of schemes [Har77, p. 79, ch. II,

Exercise 2.5], the fibred product of two arbitrary schemes X and Y can always

be taken over Spec Z, provided the fibred product exists. Therefore, define

X × Y := X ×Spec Z Y .

(c) The fibred product X ×S Y is the usual categorical product of X and Y in the

category of S-schemes.

Proposition 3.4.3. [Har77, p. 87, ch. II, Theorem 3.3] For any two schemes X

and Y over a scheme S, the fibred product X ×S Y exists.

Remarks 3.4.4. [Har77, pp. 87f, ch. II, Proof of Theorem 3.3]

(a) If S = SpecR, X = SpecA, and Y = SpecB where A, B are R-algebras, then

X ×S Y = Spec(A⊗RB), and the projections X ×S Y → X and X ×S Y → Y

correspond to the natural maps A→ A⊗RB and B → A⊗RB.

(b) Let X be covered by Xi’s and Y be covered by Yj ’s. Then X×S Y is completely

determined by the Xi ×S Yj ’s. Moreover, if S is covered by Si’s, f : X → S

and g : Y → S, Xi = f−1(Si) and Yi = g−1(Si), then X ×S Y is completely

determined by the Xi ×Si Yi’s.

The fibred product has many important uses in algebraic geometry. We want to

present two cases which we will often need.
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Base Extension The fibred product can be used for base extension: if one has a

scheme X over a base S, and a morphism T → S of schemes, then one can consider

X as a T -scheme using the fibred product. Note that since morphisms T → S

correspond to ring morphisms A→ B if T = SpecB and S = SpecA, one can think

of base extension as a mechanism transporting the defining relations of the scheme

X over to another base.

Definition 3.4.5. Let X be a scheme over S, and f : T → S a morphism. Then

the scheme

XT := X ×S T

is said to be the scheme obtained from X by base extension T → S. The projec-

tion XT → T will be denoted by fT .

Corollary 3.4.6. Let R be a ring and R → S a morphism. Let X = SpecR and

T = SpecS.

(a) If A is an R-algebra, Y = SpecA, and f : Y → X is the structure morphism,

then YT = Spec(A⊗R S) and fT : YT → T is the structure morphism of YT over

T .

(b) If Y = An
R for an n ∈ N, then YT = An

S.

We can now define projective n-space over an arbitrary scheme:

Definition 3.4.7. Let Y be a scheme and n ∈ N. Then the projective n-space over

Y , denoted by PnY , is defined as Pn
Z
×Spec Z Y .

Remark 3.4.8. [Har77, p. 103, ch. II] Note that if R is a ring, then PnR = Pn
Z
×

SpecR = PnSpecR.

As base extension can be used to enlarge the ground field of a scheme defined

over Spec F to a field containing F, one can use base extension to view such a scheme

as a scheme over the algebraic closure of F. This leads to the following definition:

Definition 3.4.9. Let X be a scheme over a field F, and let F be the algebraic

closure of F.

(a) Then X is geometrically connected if X ×F F is connected.

(b) Then X is geometrically irreducible if X ×F F is irreducible.

The next proposition shows that base extension behaves functorial:

Proposition 3.4.10. [Iit82, pp. 69, e. and Proposition 1.32 (v)] Let S be any

scheme. Then any morphism T → S of schemes induces a functor Sch(S) → Sch(T )

by X 7→ XT = X ×S T , such that f : X → Y goes over to fT : XT → YT .

This functor preserves fibred products, i. e. X ×S Y goes over to XT ×T YT and

f × g : X ×S Y → X ′ ×S Y
′ goes over to fT × gT : XT ×T YT → X ′

T ×T Y
′
T .
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Moreover, for every S-scheme X there exists a unique morphism XT → X such that

the following diagram commutes for any S-morphism f : X → Y :

X
f //

%%

Y

yy

Sch(S)

��

S

XT
fT //

OO

%%

YT

OO

yy

Sch(T )

T

OO

We now want to explicitly compute a base extension which we will need later.

Proposition 3.4.11. Let A be a ring, a be a homogenous ideal in R[x0, . . . , xn],

and ϕ : A→ B be a ring morphism. Let b = 〈ϕ(a)〉B ⊆ B[x0, . . . , xn]. Then

ProjA[x0, . . . , xn]/a ×SpecA SpecB = ProjB[x0, . . . , xn]/b.

Proof. We know that X := ProjA[x0, . . . , xn]/a is covered by the D+(xi)’s, and that

X|D+(xi) = Spec(A[x0, . . . , xn]/a)(〈xi〉),

and that

(A[x0, . . . , xn]/a)(〈xi〉)
∼= A[x0, . . . , xi−1, xi+1, . . . , xn]/(a|xi=1).

Now 〈ϕ(a|xi=1)〉B = b|xi=1, and therefore by Lemma 2.1.35 we have

(A[x0, . . . , xn]/a)(〈xi〉) ⊗AB ∼= (B[x0, . . . , xn]/b)(〈xi〉).

Hence, by Remark 3.4.4 (b), we are done.

Fibres Another important concept that can be realized with fibred products is

the concept of fibres of a morphism. If one has a morphism f : X → Y of schemes,

one can consider Y being a set which parameterizes X: for every y ∈ Y one can

look at Z := X|f−1(y). Unfortunately, Z is not a scheme over a base. But one can

rescue this concept by using the fibred product as we will see in the following.

Definition 3.4.12. Let X be a scheme, and p ∈ X a point. Consider the local

ring OX,p and its maximal ideal mX,p. Define the residue field k(p) of p on X to be

the field k(p) := OX,p/mX,p.

Note that Spec k(y) is a Y -scheme [Har77, p. 80, ch. II, Exercise 2.7].

Definition 3.4.13. Let f : X → Y be a morphism of schemes, and y ∈ Y .

(a) The fibre of f in y is the scheme

Xy := X ×Y Spec k(y).

(b) The geometric fibre of f in y is the scheme

X ×Y Spec k(y),

where k(y) is the algebraic closure of k(y). (See [Mum99, p. 111].)
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Remark 3.4.14. [Har77, p. 92, ch. II, Exercise 3.10(a)] The fibre of f in y is

homeomorphic to f−1(y) and it is a scheme over k(y). The geometric fibre of f in

y is a scheme over the algebraic closure of k(y).

A very interesting case is the generic fibre of a morphism, that is, the fibre of

a morphism X → Y at the generic point of Y (for this we obviously need Y to be

irreducible):

Proposition 3.4.15. Assume S is an irreducible and integral scheme and ξ its

generic point. Then the functor Sch(S) → Sch(k(ξ)), X 7→ Xξ from Propo-

sition 3.4.10 is faithful, i. e. if X and Y are S-schemes, then the induced map

HomS(X,Y ) → Homk(ξ)(Xξ, Yξ) is injective.

The same is true for the functor Sch(S) → Sch(k(ξ)), where k(ξ) is the algebraic

closure of k(ξ).

Proof. This question is clearly local on S, therefore, assume S = SpecR and let K =

k(ξ) be the field of fractions of R. Moreover, the question is local on Y . Hence we can

assume Y = SpecB for an R-algebra B by restricting to f : f−1(SpecB) → SpecB.

Again the question is local on X and, therefore, we can assume X = SpecA for an R-

algebra A. Thus, we have R-morphisms f : SpecA → SpecB, which correspond to

R-algebra morphisms B → A. Now, applying the functor, these are going over to K-

algebra morphisms BK → AK , where f : B → A goes to f ⊗ 1 : B⊗RK → A⊗RK,

x⊗ 1 7→ f(x)⊗ 1. By Lemma 2.1.33 (a) we get that the morphism A → A⊗RK,

a 7→ a⊗ 1 (which is R-linear) is injective, since R → K is injective. With this we

can conclude.

3.4.2 Special Classes of Morphisms

In this subsection we want to present several types of morphisms, including charac-

terizations and implications.

Immersions and Subschemes Immersions can be thought of as inclusion maps.

We will define open and closed immersions and, using them, open and closed sub-

schemes of a scheme. We will, moreover, characterize all closed subschemes using

ideal sheaves.

Definition 3.4.16. Let X be a scheme.

(1) An open subscheme of X is a scheme U whose topological subspace is an open

subset of X and whose structure sheaf OU is isomorphic to the restriction OX |U .

(2) An open immersion is a morphism f : X → Y that induces an isomorphism of

X with an open subscheme of Y .

(3) A closed immersion is a morphism f : Y → X that induces a homeomorphism

of the topological space Y into a closed subset of the topological space X and,

furthermore, the induced map f# of sheaves is surjective.

(4) A closed subscheme of X is an equivalence class of closed immersions f : Y →
X, where two such immersions f : Y → X, f ′ : Y ′ → X are identified if there

is an isomorphism ι : Y → Y ′ such that f ′ ◦ ι = f .
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(5) Let Y be a closed subscheme of X with the inclusion i : Y → X. The ideal sheaf

of Y , denoted by IY , is the kernel of the morphism i# : OX → i∗OY .

(6) An ideal sheaf I of OX is called locally principal if there exists a cover of open

affine subsets Ui = SpecRi of X such that I |Ui is generated by one section.

Proposition 3.4.17. [Har77, p. 116, ch. II, Proposition 5.9] Let X be a scheme.

(a) If Y is a closed subscheme of X, then its ideal sheaf IY is quasi-coherent.

(b) Any quasi-coherent ideal sheaf I determines a unique closed subscheme Y of X

such that I = IY .

Quasi-compact Morphisms

Definition 3.4.18. [Har77, p. 91, ch. II, Exercise 3.2] Let f : X → Y be a

morphism of schemes. Then f is quasi-compact if one can cover Y with open

affine Vi such that f−1(Vi) is compact.

Separated and Quasi-Separated Morphisms Being separated over a base cor-

responds to being Hausdorff. For example, if a scheme is separated over a field F,

then it cannot contain double points. More details can be found in the book of

Eisenbud and Harris [EH00, pp. 93ff].

Definition 3.4.19. Let f : C → S be a morphism of schemes. The diagonal

morphism is the unique morphism ∆f : C → C ×S C such that pi ◦ ∆f = idC for

both projections pi:

C
∆f

∃! ##H
HHHHHHHH idC

##

idC

$$

C ×S C

p1

��

p2 // C

f

��
C

f
// S

Definition 3.4.20. Let f : C → S be a morphism of schemes. Then f is separated

if the diagonal morphism ∆f is a closed immersion.

Proposition 3.4.21. [Har77, p. 96, ch. II, Corollary 4.2] [Har77, p. 175, ch. II]

Let f : C → S be a morphism of schemes. Then f is separated if, and only if, the

image of ∆f is closed in C ×S C. Moreover, in any case the image is locally closed,

i. e. it is the intersection of a closed with an open set.

Definition 3.4.22. [GD67, p. 226(322), Définition 1.2.1] Let f : X → Y be a

morphism of schemes. Then f is said to be quasi-separated if the diagonal mor-

phism ∆f : X → X ×Y X is quasi-compact.

Remark 3.4.23. If f : X → Y is separated, then according to [GD67, p. 226(322),

following Définition 1.2.1] it is also quasi-separated.
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Morphisms of Finite Type, Finite Morphisms In classical algebraic geometry

a morphism between varieties is called finite if every preimage of a point is finite.

See also [EH00, p. 92].

Definition 3.4.24. Let f : C → S be a morphism of schemes.

(a) Then f is locally of finite type if S can be covered by open affine subsets Vi =

SpecRi, such that for every i the preimage f−1(Vi) can be covered by open affine

subsets Uij = SpecSij, such that Sij is a finitely generated Ri-algebra.

(b) Then f is of finite type if it is locally of finite type and, additionally, for every i,

the preimage f−1(Vi) can be covered with finitely many such subsets.

(c) Then f is finite if S can be covered by open affine subsets Vi = SpecRi, such

that for every i the preimage f−1(Vi) is again an open affine subset SpecSi,

where Si is a finite2 Ri-algebra.

The notion of being of finite presentation ensures that if given a scheme X over

a base S, we have that X can locally on S be described with a finite number of

polynomials.

Definition 3.4.25. [GD67, p. 230(326), Définition 1.4.2 and p. 234(330), Défini-

tion 1.6.1] Let f : X → Y be a morphism of schemes.

(a) Let x ∈ X be a point and let y = f(x). Then f is of finite presentation at x

if there exists an open affine neighborhood V = SpecR of y and an open affine

neighborhood U = SpecS of x, such that f(U) ⊆ V and S is an R-algebra of

finite presentation.

(b) We say that f is locally of finite presentation if it is of finite presentation at all

points x ∈ X.

(c) We say that f is of finite presentation if:

(i) the morphism f is locally of finite presentation;

(ii) the morphism f is quasi-compact; and

(iii) the morphism f is quasi-separated.

Remarks 3.4.26. Let f : X → Y be a morphism of schemes.

(a) [GD67, p. 230(326), Définition 1.4.2] If Y is locally Noetherian, then f is locally

of finite type if, and only if, f is locally of finite presentation.

(b) [GD67, p. 234(330), Définition 1.6.1] If f is locally of finite presentation, then f

is quasi-compact if, and only if, it is of finite type.

2An R-algebra S is finite if it is a finitely generated R-module.
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Proper Morphisms Proper morphisms correspond to being compact (for more

details see [EH00, pp. 93ff]). In fact they are a generalization of being projective, a

notion we introduce in the next paragraph.

Definition 3.4.27. Let f : C → S be a morphism.

(a) We say that f is closed if the the image of any closed subset is closed.

(b) We say f is universally closed if it is closed and for any base extension T → S

the corresponding morphism fT : CT → T is also closed.

(c) The morphism f is proper if it is:

(i) separated;

(ii) of finite type; and

(iii) universally closed.

Proposition 3.4.28. [Iit82, p. 169, Theorem 3.1] Let S be a finitely generated

graded R-algebra. Then ProjS → SpecR is proper.

Projective Morphisms If a scheme is projective about a base, this simply means

that it can be embedded as a closed subscheme into projective space over this base.

This corresponds to being a projective variety.

Definition 3.4.29. Let f : X → Y be a morphism of schemes.

(a) Then f is projective if there exists a closed immersion ι : X → PnY for an

n ∈ N>0, such that f = g ◦ ι where g : PnY → Y is the canonical projection.

(b) The morphism f is quasi-projective if it can be factored as an open immer-

sion X → X ′ followed by a projective morphism X ′ → Y .

Remarks 3.4.30.

(a) This definition is from [Har77, p. 103, ch. II], and there it is noted that this

definition of a projective morphism is slightly different from the one in [GD61,

5.5], and that the two definitions are equal if there is a quasi-projective mor-

phism Y → SpecR for a ring R.

(b) Clearly a projective morphism is quasi-projective.

Proposition 3.4.31. [Har77, p. 103, ch. II, Theorem 4.9]

(a) A projective morphism of Noetherian schemes is proper.

(b) A quasi-projective morphism of Noetherian schemes is of finite type and sepa-

rated.

We next want to give a result which allows to describe morphisms into projective

space over a ring and, therefore, also into schemes which are projective over a ring.
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Definition 3.4.32. Let X be a scheme and F an OX-module. If s1, . . . , sn ∈
Γ(X,F) are global sections, we say s1, . . . , sn (locally) generate F if Fx is generated

by s1,x, . . . , sn,x as an OX,x-module for every point x ∈ X.

Proposition 3.4.33. [Har77, p. 150, ch. II, Theorem 7.1] Let R be a ring and X

be a scheme over R.

(a) If ϕ : X → PnR is an R-morphism, then ϕ∗(OPn
R
(1)) is an invertible sheaf on X,

which is generated by the global sections si = ϕ∗(xi), i = 0, . . . , n.

(b) Conversely, if L is an invertible sheaf on X, and s0, . . . , sn ∈ Γ(X,L) are global

sections that generate L, then there exists a unique R-morphism ϕ : X → PnR,

such that L ∼= ϕ∗(OPn
R
(1)) and si = ϕ∗(xi) under this isomorphism.

We will now show that Proj indeed generalizes projective varieties in the sense

that ProjS is projective over SpecR if S is a graded R-algebra.

Proposition 3.4.34. [Har77, pp. 80f, ch. II, Exercise 2.14 (b) and pp. 92f, ch. II,

Exercise 3.12 (a)] Let S and T be graded rings, and ϕ : S → T a graded surjective

morphism of graded rings. Then ϕ induces a closed immersion f : ProjT → ProjS.

Corollary 3.4.35. Let R be a ring, S = R[x0, . . . , xn], a be a homogenous ideal in

S, T = S/a, and ϕ : S → T be the canonical projection. Then the corresponding

morphism ProjT → SpecR is projective. If R is Noetherian, then so are ProjT and

SpecR.

Proof. The previous proposition gives a closed immersion ProjT → ProjS = PnR
and, therefore, ProjT → SpecR (given by Lemma 3.3.26) is projective. If R is

Noetherian, clearly SpecR is Noetherian. Since ProjT can be covered by the open

sets D+(ϕ(xi)), 0 ≤ i ≤ n, and T(〈ϕ(xi)〉) is Noetherian by Corollary 2.2.16 and

Proposition 2.3.5, then ProjT is also Noetherian.

Flat Morphisms Recall that a morphism X → Y can be seen as a parameteriza-

tion of X by Y . If the morphism is flat, one can show that the fibres have ‘much in

common’ (for details see for example [EH00, pp. 70–81]). We will not describe this

in more detail.

Definition 3.4.36. Let f : X → Y be a morphism.

(a) If F is an OX-module and p ∈ X a point, we say that F is flat over Y at a point x

if the stalk Fx is a flat OY,f(x)-module, where we consider Fx as an OY,f(x)-

module via the natural map f# : OY,f(x) → OX,x (note also Remark 2.6.35).

(b) If F is an OX-module, we say F is flat over Y if it is flat at every point of X.

(c) We say X is flat over Y or f is flat if OX is flat over Y .

Proposition 3.4.37. [Har77, p. 254, ch. II, Proposition 9.2]. Let A → B be a

ring morphism, and M an B-module. Let SpecB → SpecA be the corresponding

morphism of affine schemes, and F = M̃ . Then F is flat over SpecA if and only if

M is flat over A.
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Smooth Morphisms Being smooth generalizes the notion of smooth varieties.

This will become clear in Theorem 3.4.41. First we define when a morphism is of

relative dimension n.

Definition 3.4.38. [Har77, p. 268, ch. III, Definition] Let f : X → Y be a mor-

phism of schemes. Then f is of relative dimension k if for every irreducible com-

ponent X ′ ⊆ X and Y ′ ⊆ Y , such that f(X ′) ⊆ Y ′, we have dimX ′ = dimY ′ + k.

Next we define when a morphism is smooth. Note that this definition is very

technical and we will not use it directly.

Definition 3.4.39. Let f : X → Y be a morphism of schemes.

(a) [GD67, p. 56, Définition 17.1.1] Then f is formally smooth if the following

condition holds:

Let Y ′ be an arbitrary affine scheme and Y ′
0 the closed subscheme of Y ′ defined

by a nilpotent sheaf of ideals I of OY ′. Let ι : Y ′
0 → Y ′ be the embedding. Then

the map

HomY (Y ′, X) → HomY (Y ′
0 , X), g 7→ g ◦ ι

is surjective. (Here nilpotent means that every ideal I (U) in OY ′(U) is nilpo-

tent, U ∈ UY ′.)

(b) [GD67, p. 61, Définition 17.3.1] We call f smooth if it is locally of finite pre-

sentation and formally smooth.

Remark 3.4.40. [GD67, p. 68, Corollaire 17.5.2 and before, and pp. 150f, Corol-

laire 6.7.8 and Définition 6.8.1] Let f : X → Y be a morphism of schemes. Then f

is smooth if, and only if, all of the following conditions hold:

(i) The morphism f is flat;

(ii) The morphism f is of locally finite presentation;

(iii) For every y ∈ Y , the fibre Xy over k(y) is a locally Noetherian scheme; and

(iv) For every x ∈ X, the fibre Xf(x) over k(f(x)) is a regular scheme.

In particular if f : X → Spec F is a smooth morphism of schemes for a field F, then

OX,x is a local regular ring for every x ∈ X.

The following theorem gives a very useful characterization of being smooth for

morphisms which are of finite type. Combined with the Jacobian criterion, Theo-

rem 3.2.28, this will be the way we use to show that a morphism is smooth.

Theorem 3.4.41. [Mum99, p. 221, Theorem 3’] Let X, Y be schemes and f : X →
Y be a morphism of finite type. Then f is smooth of relative dimension k if, and

only if, f is flat and all its geometric fibres are disjoint unions of k-dimensional

smooth varieties.
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3.5 Categories, Divisors and Differentials

This section contains advanced material from the Theory of Schemes. In the first

subsection we will consider several categories which appear in the Theory of Schemes

and describe equivalences between some of them.

In the next subsection we discuss the concept of divisors, which are very impor-

tant in the study of elliptic curves. In the last subsection we give an overview over

differentials and relative differentials. In the case of schemes over fields, they can be

used to characterize smoothness.

3.5.1 Equivalences of Categories

We consider the following categories:

(a) The category Aff of affine schemes;

(b) The category Ring of rings (as always commutative and with a unit);

(c) The category Var(F) of varieties over a field F;

(d) The category Sch(S) of schemes over S;

(e) The category Mod(R) of R-modules; and

(f) The category QCoh(OX) of quasi-coherent OX -modules.

Proposition 3.5.1. The category of affine schemes and the category of rings are

equivalent, where the equivalence is given by the contravariant functors

Ring → Aff, R 7→ SpecR

and

Aff → Ring, X 7→ Γ(X,OX).

Proposition 3.5.2. Let R → S be a morphism of rings, X = SpecR, Y = SpecS

and f : Y → X the corresponding morphism of schemes.

(a) [Har77, p. 113, Corollary 5.5] The assignment M 7→ M̃ gives an equivalence of

categories between the category of R-modules and the category of quasi-coherent

OX-modules:

Mod(R) → QCoh(OX), M 7→ M̃

and,

QCoh(OX) → Mod(R), F 7→ Γ(X,F).

Moreover both functors are exact [Har77, p. 113, ch. II, Proposition 5.6].

(b) [Har77, p. 110, Proposition 5.2(a)] If N is a S-module, and NR the interpreta-

tion of N as an R-module using the map R→ S, then

f∗Ñ ∼= ÑR.

(c) [Har77, p. 110, Proposition 5.2(a)] If M is an R-module, then

f∗M̃ ∼= M̃ ⊗R S.
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Corollary 3.5.3. Let X be a scheme. A locally free sheaf F on X is quasi-coherent.

If F is locally free of rank n and X = SpecR, then F ∼= M̃ for a projective R-module

of rank n.

This in particular implies that Pic(SpecR) corresponds to the set of isomorphism

classes of projective R-modules of rank one, i. e. we have a natural bijection Pic(R) ∼=
Pic(SpecR) where Pic(R) is the Picard group of R as defined in Definition 2.4.15.

Proof. The first statement is clear. The second statement follows directly from

Proposition 3.5.2 (b) and Proposition 2.4.16.

Proposition 3.5.4. [Har77, p. 78, ch. II, Proposition 2.6] Let F be an algebraically

closed field. There is a natural, fully faithful functor from the category of varieties

over F to the category of schemes over Spec F

Var(F) → Sch(Spec F).

If V is a variety and X the associated scheme, then the set of closed points of X is

homeomorphic to the topological space of V . Moreover, the sheaf of regular functions

on V is obtained by restricting the structure sheaf OX by this homeomorphism. In

particular, if the homeomorphism is induced by α : V → X, then OX = α∗OV .

[Har77, p. 104, ch. II, Proposition 4.10] The image of this functor in Sch(Spec F)

is exactly the class of quasi-projective integral schemes over F. The image of the class

of projective varieties is exactly the class of projective integral schemes over F.

Remarks 3.5.5.

(a) On affine varieties V the functor works as follows: if A = F[V ] is the affine

coordinate ring of V , then the associated F-scheme is SpecA. Each point x ∈ V

is mapped to the maximal ideal mx of A, i. e. the regular functions on V vanishing

in x.

(b) On projective varieties V the functor works as follows: if A = F[V ] is the

homogenous coordinate ring of V , then the associated F-scheme is ProjA. Each

point x ∈ V is mapped to prime ideal
〈
{f ∈ Ah | f(x) = 0}

〉
.

3.5.2 Divisors

There are two kinds of divisors: Weil divisors and Cartier divisors. Weil divisors

can only be used for special schemes; in some cases Weil and Cartier divisors co-

incide. This is, for example, the case for smooth varieties over fields. For schemes

over rings, which are required to discuss elliptic curves over rings, we need Cartier

divisors. Before starting with divisors, we want to introduce a concept generalizing

the concept of the function field of a variety.

Proposition 3.5.6. [Har77, p. 91, ch. II, Exercise 3.6] Let X be an integral scheme

and x ∈ X its generic point. Then K(X) := OX,x is a field, and for every affine

open subset U = SpecR, the field of fractions of R is isomorphic to K(X).

Definition 3.5.7. Let X be an integral scheme. Then K(X) from the previous

proposition is called the function field of X.
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If X is a scheme which is not integral, we can proceed as follows:

Definition 3.5.8. Let X be any scheme. For each U ∈ UX , let SX(U) be the

elements of Γ(U,OX), whose image is not a zero-divisor in every local ring OX,x,

x ∈ U . Then

U 7→ SX(U)−1Γ(U,OX)

defines a presheaf, and the sheaf associated to it is called the sheaf of total quotient

rings, denoted by KX .

Lemma 3.5.9. [Har77, p. 140f, ch. II] Let X be a scheme and U = SpecR an

affine open set. Then KX(U) is isomorphic to the total quotient ring of R.

The following proposition, together with Propositions 3.2.17, 3.2.18 and 3.5.4,

shows that this concept is indeed a generalization of the function field of a variety.

Proposition 3.5.10. [Har77, p. 145, ch. II, in the proof of Proposition 6.15] Let

X be an integral scheme. Then KX is the constant sheaf given by the function field

of X, K(X).

Weil Divisors Compared to Cartier divisors, which we will define later, Weil

divisors are simpler to work with and easier to understand. We first specify for

which kind of schemes we define Weil divisors.

Definition 3.5.11. A scheme X is regular in codimension one if every local

ring OX,x of X of dimension one is regular.

In this paragraph we will only consider

noetherian integral separated schemes

which are regular in codimension one.
(∗)

These are, for example, smooth varieties over a field [Har77, p. 130, ch. II].

Definition 3.5.12. Let X be a scheme satisfying (∗).

(a) A prime (Weil) divisor [Y ] on X is a closed integral subscheme Y of codimen-

sion one.

(b) The group of Weil divisors WDiv(X) is the free Abelian group generated by the

prime divisors on X.

(c) An effective divisor is a divisor D =
∑
nY [Y ] ∈ WDiv(X), such that for every

prime divisor Y , nY ≥ 0.

Remark 3.5.13. If Y is a prime divisor on a scheme X satisfying (∗), then Y is

irreducible. Assume y ∈ Y is its generic point. Then OX,y is a discrete valuation

ring with quotient field K, being the same as the function field K(X) of X.

Using this we can define the order of a rational function on X in a prime divisor.
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Definition 3.5.14. Let X be a scheme satisfying (∗), Y a prime divisor of X and

f ∈ K(X)∗. If y ∈ Y is the generic point of Y , then the valuation induced by OX,y

on K(X)∗ is denoted by ordY . Therefore, ordY : K(X)∗ → Z is a group morphism;

if ordY (f) < 0, one says f has a pole in Y ; if ordY (f) > 0, one says f has a zero

in Y .

We can use the order of a rational function at a prime divisor to define a divisor

for a rational function. We first have to show that this is well-defined:

Proposition 3.5.15. [Har77, p. 131, ch. II, Lemma 6.1] Let X be a scheme satis-

fying (∗) and f ∈ K(X)∗. Then

div(f) :=
∑

ordY (f)[Y ]

is a well-defined Weil divisor on X. Moreover, if g ∈ K(X)∗ is another function,

then div(f/g) = div(f) − div(g). Therefore div : K(X)∗ → WDiv(X) is a group

homomorphism.

Definition 3.5.16. Let X be a scheme satisfying (∗). A divisor of the form div(f)

for an f ∈ K(X)∗ is called principal. Two divisors D,D′ ∈ WDiv(X) are called

linearly equivalent if D −D′ is principal. The divisor class group of X, denoted by

Cl(X), is the quotient of WDiv(X) by the subgroup of principal divisors.

Remark 3.5.17. Let X be a scheme satisfying (∗). Let K∗ be the kernel of div.

Then we have the following exact sequence:

0 // K∗ � � // K(X)∗
f 7→div(f) // WDiv(X) // // Cl(X) // 0.

We will look at Weil divisors on curves in section 3.7.4, and for that case we will

also explicitly describe what K∗ is.

Cartier Divisors Cartier divisors are technically more complicated than Weil di-

visors but contrary to Weil divisors they can be defined for every scheme. Cartier

divisors are locally divisors of a function, hence locally principal. There is also the

notion of a relative Cartier divisor, which is needed if one considers parameteriza-

tions X → Y . In this case, a relative Cartier divisor can be seen as a family of

Cartier divisors on the fibres.

Definition 3.5.18. Let X be a scheme. The group of Cartier divisors CDiv(X)

on X is the quotient sheaf K∗
X/O∗

X , and an element of it is called a Cartier divisor.

We will write the group operation additively instead of multiplicatively.

A Cartier divisor is principal if it is in the image of the canonical map K∗
X →

K∗
X/O∗

X . Two Cartier divisors are linearly equivalent if their difference is principal.

The group of Cartier divisors factored by the subgroup of principal Cartier divisors

is called the Cartier divisor class group, denoted by CaCl(X).

Remark 3.5.19. [Har77, p. 141, ch. II] Let X be a scheme. A Cartier divisor on

X can be described as a covering Ui, i ∈ I of X and elements fi ∈ K∗
X(Ui), i ∈ I,

such that for two i, j ∈ I we have fi/fj ∈ O∗
X(Ui ∩ Uj).
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This explains why Cartier divisors are called locally principal divisors: for every

point x ∈ X there is a neighborhood U ∈ UX,x on which the divisor is principal. We

will now give a result which shows that Weil and Cartier divisors coincide in one

case:

Proposition 3.5.20. [Har77, p. 141, ch. II, Proposition 6.11] Let X be an inte-

gral, separated Noetherian scheme, such that all local rings are unique factorization

domains. Then WDiv(X) ∼= CDiv(X), and this isomorphism respects linearly equiv-

alence and the property of being principal.

Remark 3.5.21. [Har77, p. 142, ch. II, Remark 6.11.1A] The assumptions of the

proposition are satisfied by every regular, integral, separated Noetherian scheme,

where regular means that all local rings are regular.

Next we will define a map from CDiv(X) into Pic(X).

Definition 3.5.22. [Har77, p. 144, ch. II] Let X be a scheme and D ∈ CDiv(X),

represented by (Ui, fi)i∈I . Define a subsheaf L(D), the sheaf associated to D, of KX

by taking the sub-OX-module of KX generated by f−1
i on Ui, i ∈ I.

Proposition 3.5.23. [Har77, p. 144, ch. II, Proposition 6.13] Let X be a scheme.

(a) The map D 7→ L(D) gives a one-to-one correspondence between CDiv(X) and

invertible subsheaves of KX .

(b) For two divisors D,D′ ∈ CDiv(X) we have L(D −D′) ∼= L(D)⊗L(D′)−1.

(c) Two divisors D,D′ ∈ CDiv(X) are linearly equivalent if, and only if, L(D) ∼=
L(D′), where the isomorphism is in the category Mod(OX), i. e. not taking into

account the embedding into KX .

Corollary 3.5.24. [Har77, p. 144, ch. II, Corollary 6.14] If X is a scheme, the

map D 7→ L(D) gives an injective morphism from CaCl(X) into Pic(X).

For certain schemes, this map is a bijection:

Proposition 3.5.25. [Har77, p. 145, ch. II, Proposition 6.15] Let X be an integral

scheme. Then CaCl(X) is isomorphic to Pic(X).

Corollary 3.5.26. [Har77, p. 145, ch. II, Corollary 6.16] If X is a Noetherian,

integral, separated scheme, such that all local rings are unique factorization domains,

then Cl(X) ∼= Pic(X).

The next result simply states that the Picard group is functorial:

Proposition 3.5.27. [Har77, p. 148, ch. II, Exercise 6.8(a)] Let f : X → Y be a

morphism of schemes. Then

L 7→ f∗L

induces a morphism of Picard groups f ∗ : Pic(Y ) → Pic(X).
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We next want to define what an effective Cartier divisor is. We will see that in

the above case, where CDiv(X) and WDiv(X) coincide, the notion of being effective

is also the same for both kinds of divisors.

Definition 3.5.28. Let X be a scheme and D ∈ CDiv(X) represented by (Ui, fi)i∈I .

Then D is effective if fi ∈ O∗
X(Ui) for all i ∈ I.

Remark 3.5.29. [Har77, p. 145, ch. II, Remark 6.17] If X is a Noetherian, integral,

separated scheme, such that all local rings are unique factorization domains, then the

isomorphism WDiv(X) ∼= CDiv(X) from Proposition 3.5.20 respects the property

of being effective.

There is a close connection between effective Cartier divisors on a scheme X and

special closed subschemes of X:

Definition 3.5.30. Let X be a scheme and D an effective Cartier divisor, given

by (Ui, fi)i∈I . The associated subscheme of codimension one of D is the closed

subscheme defined by the sheaf of ideals in OX which is locally generated by the fi’s.

Proposition 3.5.31. [Har77, p. 145, ch. II, Proposition 6.18] Let X be a scheme,

D be an effective Cartier divisor, and Y be its associated closed subscheme. Then

IY
∼= L(−D) ∼= L(D)−1.

Remark 3.5.32. An effective Cartier divisor is uniquely determined by the asso-

ciated closed subscheme. Moreover, every locally principal closed subscheme deter-

mines a unique effective Cartier divisor (see [Har77, p. 145, ch. II, Remark 6.17.1]).

We will now define relative effective Cartier divisors and state some results. We

will later use relative effective Cartier divisors for describing the group law on a

generalized elliptic curve.

Definition 3.5.33. Let X be a scheme over S, and D an effective Cartier divisor

on X. Then D is relative if the associated closed subscheme of D is flat over S.

Remarks 3.5.34.

(a) By using the fact that there is a one-to-one correspondence between effective

Cartier divisors and locally principal closed subschemes, one can also define a

relative effective Cartier divisor (as in [KM85, p. 1, Definition 1.1.1]) by the

following:

A relative effective Cartier divisor D of X/S is a closed subscheme of X which

is flat over S, and whose ideal sheaf ID ⊆ OX is an invertible OX -module.

(b) [KM85, p. 3, Remark 1.1.1] The conditions for a closed subscheme D being

an relative effective Cartier divisor is local on S in the sense that if SpecR

is an open affine subset, one must be able to cover f−1(SpecR) with open

affine Ui = SpecAi such that Ai is an R-algebra, D ∩ Ui is locally defined by

one fi ∈ Ai, and fi is a non-zero-divisor in Ai and Ai/ 〈f〉 is flat over R. (Here

f : X → S is the structure morphism.)
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Proposition 3.5.35. Let X be a scheme over S.

(a) [KM85, pp. 3f, Remark 1.1.2] The sum of two relative effective Cartier divisors

is again a relative effective Cartier divisor.

(b) [KM85, p. 4, Remark 1.1.3] Let D be an relative effective Cartier divisor. Then

there is a tautological exact sequence

0 // OX
// I −1

D
// OD ⊗OX

I
−1
D

// 0 ,

and the image of 1 ∈ OX in I
−1
D , denoted by `D, allows to recover D from

(I −1
D , `D) as the scheme of zeros of `D ∈ I

−1
D .

(c) [KM85, pp. 4f, Remark 1.1.3] The procedure in (b) gives a one-to-one corre-

spondence between the following sets:

(1) Isomorphism classes of tuples (L, `), where ` ∈ Γ(X,L) is a global section

such that

0 // OX
f 7→f` // L // L/OX

// 0

is exact, and that L/OX is flat over S. Here two tuples (L, `) and (L′, `′) are

said to be isomorphic if L ∼= L′ and ` is mapped onto `′ by this isomorphism.

(2) The set of relative effective Cartier divisors on X/S.

If Di =̂ (Li, `i) are relative effective Cartier divisors on X/S, then D1 +D2 =̂

(L1 ⊗L2, `1 ⊗ `2).

(d) [KM85, p. 5, Remark 1.1.4] Let D be a relative effective Cartier divisor on X/S,

represented by (L, `).

(1) Let T → S be any morphism of schemes. Then DT is a relative effective

Cartier divisor on XT /T , represented by (LT , `T ), where `T is the image of

` under the projection OL → OLT
.

(2) Let f : Y → X be a flat S-morphism of S-schemes. Then f ∗D is a relative

effective Cartier divisor on Y/S.

(e) [KM85, p. 7, Corollary 1.1.5.2] Let S be locally Noetherian and X → S of finite

type. Let D be a closed subscheme which is flat over X. Then D is a relative

effective Cartier divisor if, and only if, for all geometric points Spec F → S of

S the closed subscheme DSpec F of XSpec F is a relative effective Cartier divisor

on XSpec F/ Spec F.

The next two results emphasize the local nature of relative effective Cartier

divisors:

Proposition 3.5.36. Let X be a scheme over S with structure morphism f : X →
S, which is of finite presentation, and let D be a closed subscheme of X. Then the

following are equivalent:

(i) The ideal sheaf ID is invertible and D is flat over S, i. e. D is a relative

effective Cartier divisor.
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(ii) We have that X is flat over S, and for every s ∈ S the restriction Ds of D

onto the fibre Xs over s is an effective Cartier divisor on Xs.

Proof. This follows directly from [BLR90, p. 213, Lemma 6]. Note also [MFK65,

p. 24, e)].

Proposition 3.5.37. Let X be a scheme over S with structure morphism f : X →
S, which is of finite presentation. Let D be a relative effective Cartier divisor on X

over S. If U is an open subset of S and V = f−1(U), then D|V is a relative effective

Cartier divisor on X|V over S|U .

Proof. This follows directly from Remark 3.5.32 and the local nature of flatness.

3.5.3 Differentials

Kähler differentials play the role of differential forms on manifolds; they can be used

to characterize smoothness in certain contexts. We also need the Kähler differentials

to define what canonical divisors are on smooth varieties over fields.

Definition 3.5.38. Let X be a scheme over S with structure morphism f : X → S,

and let ∆f : X → X ×S X be the diagonal morphism. Let W be the open subscheme

of X ×S X, such that ∆f (X) is a closed subscheme of W (see Proposition 3.4.21),

and let I be the ideal sheaf of ∆f (X) in W . Define ΩX/S := ∆∗
f (I /I 2) to be the

sheaf of relative differentials of X over S.

Remarks 3.5.39.

(a) [Har77, p. 175, ch. II, Remark 8.9.1] If f : X → S is a morphism of sheaves,

then ΩX/S has the structure of an OX -module. Moreover, it is quasi-coherent.

(b) [Har77, p. 175, ch. II, Remark 8.9.2] Let T be an R-algebra, and S = SpecR,

X = SpecT and f : X → S the structure morphism. Then ΩX/S is the OX -

module associated to the T -module ΩT/R. (See Section 2.3.4 for more informa-

tion about ΩT/R.)

The following result shows how the module of Kähler differentials is connected

to a scheme over a field being smooth:

Proposition 3.5.40. [Har77, p. 177, ch. II, Theorem 8.15] Let X be an irreducible

separated scheme of finite type over an algebraically closed field F, and let n = dimX.

Then ΩX/F is a locally free OX-module of rank n if, and only if, X is a smooth variety

over F.

Using this one can also define being smooth for a morphism of schemes over a

field as follows:

Remark 3.5.41. [Har77, p. 268, ch. III, Definition] Let f : X → Y be a morphism

of schemes of finite type over a field F. Then f is smooth of relative dimension k if,

and only if, all of the following conditions hold:

(i) The morphism f is flat;
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(ii) The morphism f is of relative dimension k; and

(iii) For every point x ∈ X we have

dimk(x)(ΩX/Y ⊗ k(x)) = n.

Let F be an algebraically closed field. We will define the tangent sheaf, the

canonical sheaf and the geometric genus for a smooth variety over F. The canonical

sheaf and the geometric genus will be needed to state the Theorem of Riemann-Roch,

which helps computing the dimension of a linear system of a divisor and which is

of great importance for showing results for elliptic curves over algebraically closed

fields.

Definition 3.5.42. Let X be a smooth variety over F.

(a) The tangent sheaf of X is TX := HomOX
(ΩX/F,OX) = Ωg

X/F.

(b) The canonical sheaf of X is ωX :=
∧n ΩX/F, the n-th exterior power of ΩX/F,

where n = dimX. (See Definition 2.6.41.)

(c) If X is projective, the geometric genus of X is pg(X) = dimF Γ(X,ωX).

Remark 3.5.43. Let X be a smooth variety over F of dimension one. Then by

Proposition 3.5.40, ΩX/F = ωX is an invertible sheaf. Therefore, by Corollary 3.5.26,

it corresponds to a linear equivalence class of Weil divisors on X. The divisors in

this class are called canonical divisors.

3.6 Affine and Projective Geometry Revisited

In this section we want to inspect how the sets An(R) and Pn(R) from the first

section and their scheme theoretic counterparts An
R and PnR correspond to each other

for several classes of rings R.

Let R be any ring. Recall that the scheme-theoretic affine n-space over R by

Definition 3.3.13 is An
R = SpecR[x1, . . . , xn].

Proposition 3.6.1. Let F be an algebraically closed field. Then the closed points

of An
F

are in a natural one-to-one correspondence with the points in An(F) = Fn.

Proof. By Hilbert’s Nullstellensatz 3.1.12 the maximal ideals in F[x1, . . . , xn] are

exactly of the form m = 〈x1 − a1, . . . , xn − an〉 for (a1, . . . , an) ∈ Fn.

Remark 3.6.2. If F is not algebraically closed, or it is a ring, then this is not true.

Proposition 3.6.3. The R-rational points of An
R are in a natural one-to-one cor-

respondence with the points in An(R).

Proof. Recall that the R-rational points of An
R are exactly the morphisms SpecR→

An
R = SpecR[x1, . . . , xn], which commute with the structure morphism An

R →
SpecR. Since the category of affine schemes is equivalent to the category of rings (see

Proposition 3.3.8), these morphisms correspond to ring morphisms R[x1, . . . , xn] →
R being the identity on R. Since every such morphism is uniquely determined by

the images of the xi in R, they clearly are in a one-to-one correspondence with the

points in An(R) = Rn.
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Next we are interested in the structure of PnR, which is by Definition 3.3.25 equal

to ProjR[x0, . . . , xn].

Proposition 3.6.4. Let F be an algebraically closed field. Then the closed points

of Pn
F

are in a natural one-by-one correspondence with the points in Pn(F).

Proof. (See also [Har77, p. 77, ch. II, Example 2.5.1].) This follows from Corol-

lary 3.1.13: if a is a homogenous ideal not containing the irrelevant ideal, then VF(a)

contains at least one point in Pn(F). This implies that the ideals

〈{aixj − ajxi | 0 ≤ i < j ≤ n}〉 =
〈
{f ∈ F[x0, . . . , xn]

h | f(a) = 0}
〉

for a ∈ Pn(F) are exactly the closed points in Pn
F
.

Proposition 3.6.5. Let R be a ring with PicR = 0. (See Corollary 3.5.3.) Then

the R-rational points of PnR are in a natural one-to-one correspondence with the

points in Pn(R).

Proof. If (a0, . . . , an) ∈ Pn(R), then the ai locally generate R as an R-module. Thus,

treated as global sections of OSpecR, they locally generate OSpecR and, hence, by

Proposition 3.4.33, induce a unique A-rational point in PnR. Since two points in

Pn(R) are identified if there exists an R-module automorphism (these are exactly

multiplication by a unit) of R mapping one representation onto the other, this shows

that every point of Pn(R) induces a unique R-rational point in PnR.

Conversely, let f : SpecR → Pn(R) be an R-rational point. By Proposi-

tion 3.4.33 it corresponds to an invertible sheaf on SpecR and n + 1 global sec-

tions which locally generate it. Since every invertible sheaf is isomorphic to OSpecR

by assumption, f corresponds to n + 1 elements of R which locally generate R

as an R-module, i. e. they are primitive over R. Moreover, they are unique up to

R-automorphisms of R, which are exactly multiplication by units of R.

We next explicitely construct theR-point morphisms SpecR→ An
R and SpecR→

PnR for given points in An(R) and Pn(R), respectively.

Proposition 3.6.6. Let a = (a1, . . . , an) ∈ An(R) be a point. Then the associated

R-rational point f : SpecR → An
R is defined thus: a prime ideal p ∈ SpecR is

mapped onto

{f ∈ R[x1, . . . , xn] | f(a) ∈ p},

and a regular function g ∈ OAn
R
(U) is mapped onto g(a).

Proof. This follows directly from the proof of Proposition 3.6.3.

Proposition 3.6.7. Let R be a ring and a = (a0 : · · · : an) ∈ Pn(R) be a point.

Then the associated R-rational point f : SpecR → PnR is defined thus: a prime

ideal p ∈ SpecR is mapped onto

〈
{f ∈ R[x0, . . . , xn]

h | f(a) ∈ p}
〉
,

and a regular function g ∈ OPn
R
(U) is mapped onto g(a).
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Proof. Let a = (a0, . . . , an) ∈ Rn+1. We define a morphism sa : SpecR→ PnR thus:

Let p ∈ SpecR. Define

aa,p :=
〈
{f ∈ R[x0, . . . , xn]

h | f(a) ∈ p}
〉
R[x0,...,xn]

.

One can directly see that aa,p is a homogenous ideal and also that it is prime if it is

not R[x0, . . . , xn]. But if aa,p = R[x0, . . . , xn], then it follows that 〈a0, . . . , an〉 ⊆ p,

which cannot be as 〈a0, . . . , an〉 = R. Hence, aa,p ∈ ProjR[x0, . . . , xn]. Define the

topological map sa : SpecR→ PnR by p 7→ aa,p.

Let V (a) be a closed set in ProjR[x0, . . . , xn], where a ⊆ R[x0, . . . , xn] is a

homogenous ideal. Now we have that

p ∈ s−1
a (V (a)) ⇐⇒ sa(p) ∈ V (a) ⇐⇒ a ⊆ aa,p ⇐⇒ ∀f ∈ a : f(a) ∈ p

⇐⇒ a(f) := {f(a) | f ∈ a} ⊆ p ⇐⇒ p ∈ V (a(a)),

and hence sa is continuous.

Now we are left to define s#a : OPn
R
→ s∗aOSpecR. Let U := ProjR[x0, . . . , xn] \

V (a) be an open set in PnR, with a ⊆ R[x0, . . . , xn] a homogenous ideal. As we have

already seen, s−1
a (U) = SpecR \ V (a(a)). Let (s

(p)
a )p∈U ∈ ∏p∈U R[x0, . . . , xn](p) be

an element of OPn
R
(U); we define its image s#a ((s(p))p∈U ) as

(s(aa,p)(a))
p∈s−1

a (U),

where
s

f
(a) =

s(a)

f(a)
∈ Rp if

s

f
∈ R[x0, . . . , xn](aa,p).

We first need to check whether this is well-defined. As s and f are homogenous of

the same degree, the fraction s(a)
f(a) ∈ Rp is well-defined if f(a) 6∈ p. But this is the

case since f 6∈ aa,p.

Finally one must check that f ◦sa = idSpecR. As aa,p∩R = p, this is clear for the

topological maps f and sa. Let U = SpecR \ V (a) be any open set in SpecR, and

(s(p))p∈U any element of OSpecR(U). We have to check that (f ◦ sa)#((s(p))p∈U ) =

(s#a ◦ f#)((s(p))p∈U ) is indeed (s(p))p∈U . Now

f#((s(p))p∈U ) = (s(p∩R))p∈f−1(U).

Applying s#, we get

s#
(
f#((s(p))p∈U )

)
= s#

(
(s(q∩R))q∈f−1(U)

)

= (s(aa,p∩R)(a))p∈s−1(f−1(U)) = (s(p))p∈U ,

since s(p) is the quotient of two elements of R and, hence, s(p)(a) = s(p), and as

s−1
a (f−1(U)) = (f ◦ sa)−1(U) = U .

Now by Proposition 3.3.31 we have (OPn
R
(1))(PnR) = 〈x0, . . . , xn〉R, and by [Har77,

p. 150, ch. II] we know that the global sections xi generate OPn
R
(1)p as an OPn

R,p
-

module for every p ∈ PnR. Therefore, clearly s∗a(OPn
R
(1)) = OSpecR and s∗a(xi) =

ai.

Before closing this section we want to explicitly describe the R-rational points

of a closed subscheme of PnR.
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Proposition 3.6.8. Let R be a ring, n ∈ N, and a be a homogenous ideal in

R[x0, . . . , xn]. Let X = ProjR[x0, . . . , xn]/a, S = SpecR, and Y = PnR. Let fX :

X → S and fY : Y → S be the structure morphisms and i : X → Y be the closed

immersion. (See Proposition 3.4.34 and Corollary 3.4.35.) Then the R-rational

points of X are exactly the R-rational points s ∈ Y (S) which factor over X, i. e.

there is an R-rational point s′ ∈ X(S) satisfying i ◦ s′ = s.

X
i //

fX

��@
@@

@@
@@

@@
@@

@ Y

fY

����
��

��
��

��
��

S
s′

TT

s

JJ

Moreover, if PicR = 0, then the R-rational points of X correspond to the

points a ∈ Pn(R), satisfying g(a) = 0 for all g ∈ ah, i. e. to the points a ∈ VR(a).

Proof. Clearly every R-rational point s′ ∈ X(S) induces an R-rational point s =

i ◦ s′ ∈ Y (S). And if s : S → Y factors as s = i ◦ s′ with s′ : S → X, then clearly

s′ ∈ X(S).

For the second statement note that the R-rational points of X correspond to

the insertion morphisms R[x0, . . . , xn] → R, which factor over R[x0, . . . , xn]/a, i. e.

which can be written as the concatenation of R-linear morphisms

R[x0, . . . , xn] // R[x0, . . . , xn]/a // R,

where the first map is the canonical projection (see Corollary 3.4.35).

3.7 Curves

In this section we will study curves over algebraically closed fields. We are especially

interested in morphisms between curves, in the Frobenius morphism, in how Weil

divisors specialize on smooth curves, in the intersection of lines with curves and in

tangent lines, and in how the genus of a curve is defined. As a final result in this

section we will present the Riemann-Roch Theorem, which allows us to compute

how many divisors are linearly equivalent to a given one.

Let F be an algebraically closed field. We want to begin by defining what a curve

over a field F is. We first state two definitions, which turn out to be the same for

smooth curves.

Definition 3.7.1. A curve over F is a projective variety defined over F of dimen-

sion one.

Definition 3.7.2. [Har77, p. 136, ch. II]

(a) A curve over F is an integral separated scheme X of finite type over F of dimen-

sion one.

(b) A curve C is complete if the structure morphism C → Spec F is proper.

(c) A curve is smooth if all local rings are regular local rings.
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3.7.1 Some Facts about Curves

In this subsection we want to state some fundamental results on curves and show

that the two above definitions for curves over F coincide for smooth curves.

Proposition 3.7.3. [Har77, p. 136, ch. II, Proposition 6.7] Let C be a smooth

curve over F. Then the following are equivalent:

(a) The curve C is complete.

(b) The curve C is projective.

(c) The curve C is isomorphic to t(CF(C)), where CF(C) is the abstract smooth curve

associated with the function field F(C) [Har77, p. 42ff, ch. I] and t the functor

Var(F) → Sch(F). (Compare Proposition 3.5.4 for t.)

Proposition 3.7.4. [Har77, p. 45, ch. I, Corollary 6.12] The following categories

are equivalent:

(a) The category of smooth projective varieties of dimension one over F, with dom-

inant morphisms.

(b) The category of function fields of dimension one over F, with F-homomorphisms.

The equivalence is given by assigning to C the function field F(C), and to a function

field K the abstract smooth curve CK .

Therefore the smooth curves, seen as varieties (Definition 3.7.1), are exactly the

complete smooth curves, seen as schemes (Definition 3.7.2). In fact, the different

definitions of a function field also coincide:

Proposition 3.7.5. Let C be a smooth complete curve over F (as a scheme), and

C ′ the corresponding smooth curve over F (as a variety). Then the function field of

C is the same as the function field of C ′.

Proof. This follows from Proposition 3.2.18 (c) and Proposition 3.5.4.

We want to close this subsection with an analogon to Liouville’s Theorem from

complex analysis for complete smooth curves:

Proposition 3.7.6. [Sil86, p. 22, Proposition 1.2] Let C be a complete smooth

curve and f ∈ F(C). Then f has no poles if, and only if, f ∈ F, i. e. f is constant.

Proof. By using Proposition 3.7.3 and Proposition 3.5.4, we get from Proposi-

tion 3.2.18 (a) that OC(C) ∼= F.

3.7.2 Morphisms between Curves

In this subsection we want to study how a morphism between curves implies an

inclusion of function fields, which allows classification of morphisms by using prop-

erties of the induced field extension. We are also interested in the (local) behavior

of a morphism in a point.
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Remarks 3.7.7.

(a) [Har77, p. 25, ch. I] Let X and Y be projective varieties over F, and f : X → Y

a dominant rational map. Let f be represented by 〈U, fU 〉 as in Section 3.2.5.

If g ∈ F(Y ) is a rational function represented by 〈V, h〉, f−1
U (V ) is a non-empty

(since fU (U) is dense) open set in X and, moreover, f ◦ fU is a regular function

on f−1
U (V ). Therefore,

〈
f−1
U (V ), f ◦ fU

〉
represents a rational function in F(X).

(b) Let X and Y be integral schemes over F, and f : X → Y a finite morphism. Let

ξ be the generic point of X, and ζ the generic point of Y . Then f(ξ) = ζ, as if

y ∈ Y is not ζ, then ζ 6∈ {y}, and hence f−1({y}) is a proper closed subset of

X. Therefore, f−1({y}) cannot contain ξ, i. e. in particular we have f(ξ) 6= y.

Thus, there is a well-defined map f#
ζ : F(Y ) = OY,ζ → OX,ξ = F(X).

(c) Let f : X → Y be a finite morphism of projective varieties. Then it gives the

same injection of function fields in the sense of (a) as the corresponding injection

of function fields in the sense of (b).

If, in the following, f : X → Y is a finite morphism, we will identify F(Y ) as

a subfield of F(X). We begin by characterizing what kind of morphisms C → C ′

between curves can appear if C is a complete smooth curve.

Proposition 3.7.8. [Har77, p. 137, ch. II, Proposition 6.8] Let C be a complete

smooth curve over F and let C ′ be an arbitrary curve over F. If f : C → C ′ is a

morphism, then one of the following cases occurs:

(a) either the image of f is a point, i. e. f is constant (and in particular not finite);

or

(b) the image is C ′, f is a finite morphism, C ′ is complete and F(C ′) is a finite field

extension of F(C).

Next we want to define properties of non-constant morphisms based on their

induced field extension:

Definition 3.7.9. Let f : X → Y be a finite morphism of complete smooth curves.

(a) The degree of f , denoted by deg f , is the degree of the field extension F(X)/F(Y ).

(b) We call f separable if F(X)/F(Y ) is separable.

(c) The separable degree of f , denoted by degs f , is the separable degree of the field

extension F(X)/F(Y ).

(d) We call f inseparable if F(X)/F(Y ) is inseparable.

(e) The inseparable degree of f , denoted by degi f , is the inseparable degree of the

field extension F(X)/F(Y ).

(f) If F has characteristic p > 0, we call f purely inseparable if F(X)/F(Y ) is

purely inseparable.
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We can quickly conclude the following facts:

Corollary 3.7.10. If f : X → Y is a morphism of complete smooth curves and

deg f = 1, then f is an isomorphism.

Proof. Since 1 = deg f = [F(X) : F(Y )], f induces an isomorphism F(C) → F(C ′)

and, therefore, the claim follows from Proposition 3.7.4.

Corollary 3.7.11. Let f : X → Y and g : Y → Z be non-constant morphisms

of complete smooth curves. Then deg(g ◦ f) = deg f · deg g and degs(g ◦ f) =

degs f · degs g.

Proof. This follows directly from the multiplication formula for degrees of field ex-

tensions, [K : F] = [F′ : F] · [K : F′], where K ⊆ F′ ⊆ F is a tower of fields. The same

is true for the separable degree by Remark 2.2.32 (c).

Note that a closed point P ∈ C on a complete smooth curve C is a prime divisor

and, therefore, one has a valuation ordP on O∗
C,P .

Definition 3.7.12. Let C be a complete smooth curve and P ∈ C a closed point.

Then a local parameter of C at P is an element t ∈ OC,P with valuation ordP (t) = 1.

Remark 3.7.13. If C is a complete smooth curve, then local parameters exist for

all closed points. (See Remark 3.5.13.)

We can now define what the ramification index of a morphism in a point is.

Definition 3.7.14. [Har77, p. 299, ch. IV] Let f : C → C ′ be a non-constant

morphism of smooth complete curves, and let P ∈ C. Let Q = f(P ) and t ∈ OC′,Q

be a local parameter at Q. Consider t as an element of OC,P by the natural map f#
Q :

OC′,Q → OC,P , and define eP (f) := ordP (t) ∈ Z to be the ramification index of f

at P .

If eP (f) > 1, then f is said to be ramified at P and Q is said to be a branch

point of f , and if eP (f) = 1 it is said to be unramified at P . If C is unramified at

every P ∈ C, then C is said to be unramified.

Proposition 3.7.15. [Sil86, p. 28, Proposition 2.6] Let ϕ : C1 → C2 be a non-

constant morphism of smooth complete curves.

(a) For every Q ∈ C2 we have

∑

ϕ(P )=Q

eP (ϕ) = degϕ.

(b) For all but finitely many Q ∈ C2 we have

∣∣ϕ−1(Q)
∣∣ = degs ϕ.

(c) Let ψ : C2 → C3 be another non-constant morphism of smooth complete curves.

Then for all P ∈ C1 we have

eP (ψ ◦ ϕ) = eϕ(P )(ψ) · eP (ϕ).
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We close this section with a result for rational maps from complete smooth curves

to projective varieties. Some interesting special cases are rational maps C → Pn
F

for

a complete smooth curve C.

Proposition 3.7.16. [Sil86, p. 23, ch. II, Proposition 2.1] Let ϕ : C → X be a

rational map from a complete smooth curve C to a projective variety X. Then ϕ is

a morphism.

3.7.3 The Frobenius Morphism

If F is a field of prime characteristic p, and q = pn, we have seen in Section 2.2.3

that the map x 7→ xq is a field endomorphism. Moreover, for every x ∈ F, xq = x if,

and only if, x ∈ Fq. In this subsection we will define the Frobenius endomorphism

for schemes. This will allow us to determine later all Fq-rational points of a curve

as the kernel of id − ϕ, where ϕ is the q-th power Frobenius morphism.

Definition 3.7.17. [Har77, p. 301, ch. II] Let X be a scheme such that all local

rings of X have prime characteristic p > 0, and let q be a power of p. Define the

Frobenius morphism Fq : X → X as being the identity map on the topological space

of X, and being the q-th power map on F#
q (U) : OX(U) → OX(U), g 7→ gq.

Definition 3.7.18. [Har77, p. 302, ch. II] Let X be a scheme with the structure

morphism π : X → Spec F, where there characteristic of F is p > 0, and let q be a

power of p. Define the scheme X(q) over F as exactly the same scheme X but with

structure morphism π ◦Fq. Then Fq : X → X becomes the F-morphism Fq : X(q) →
X, called the F-linear Frobenius morphism.

We will now state two results on the F-linear Frobenius morphism and its con-

nection to purely inseparable morphisms.

Proposition 3.7.19. [Sil86, p. 30, Proposition 2.11] Let F be a field of character-

istic p > 0 and C be a curve over F, and let Fq : C → C(q) be the F-linear Frobenius

morphism.

(a) Then Fq is purely inseparable.

(b) Moreover degFq = q.

(c) If F is perfect, F(C(q)) = F(C)q.

Proposition 3.7.20. [Har77, p. 302, ch. II, Proposition 2.5] Let f : X → Y

be a purely inseparable morphism of smooth complete curves over F, where F has

characteristic p > 0. Then f = Fq for q being a power of p.

3.7.4 Divisors

Since smooth curves satisfy the condition (∗) from Section 3.5.2, we can speak of

Weil divisors on smooth curves. Moreover, the prime divisors on smooth curves are

exactly the closed points ([Har77, p. 137, ch. II]).

Recall that a Weil divisor on a smooth curve C is a formal finite sum of prime

divisors (hence points in this case) with multiplicities, i. e. D =
∑

P∈C nP [P ], where
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nP ∈ Z and all but a finite number of nP ’s are zero. To each function f ∈ F(V )∗

we can associate a divisor div(f) by taking the valuation of OC,P for f , denoted by

ordP (f), i. e. div(f) =
∑

P∈C ordP (f)[P ]. Such divisors div(f) are called principal

and, if the difference of two arbitrary divisors is principal, they are called linearly

equivalent. The group of divisors modulo the subgroup of principal divisors is the

divisor class group Cl(C), which for smooth curves over F is isomorphic to Pic(C)

and to CaCl(C). In the following we will identify Cl(C) with Pic(C) and CaCl(C),

and also WDiv(C) with CDiv(C), the group of Cartier divisors.

We first state an exact sequence showing how all these definitions interact:

Remark 3.7.21. If C is a complete smooth curve, the kernel of div(•) is F∗ by

Proposition 3.7.6 and, therefore, we have the following exact sequence:

0 // F∗ � � // F(C)∗
f 7→div(f) // WDiv(C) // // Cl(C) // 0

CDiv(C) CaCl(C)

Pic(C)

Next we define the degree of a Weil divisor.

Definition 3.7.22. Let C be a smooth curve and D =
∑
nP [P ] a divisor on C.

Then the degree of D is degD :=
∑
nP .

Remark 3.7.23. Clearly deg : WDiv(C) → Z is a surjective group homomorphism.

If f : C → C ′ is a morphism of curves, we want to transport Weil divisors on C ′

to C.

Remark 3.7.24. [Har77, p. 137, ch. II] Let f : C → C ′ be a finite morphism of

smooth curves, P ∈ C and f(P ) = Q ∈ C ′. Let t ∈ OC′,Q be a local parameter.

Then t can be seen as an element of OC,P by the natural map f#
Q : OC′,Q → OC,P .

Moreover,
∑

f(P ′)=Q ordP ′(t)[P ′] is a well-defined Weil divisor on C, only depending

on f and Q.

Definition 3.7.25. Let f : C → C ′ be a finite morphism of smooth curves. Define

a morphism f∗ : WDiv(C ′) → WDiv(C) by

f∗([Q]) =
∑

f(P )=Q

ordP (t)[P ],

where Q ∈ C ′ and t is a local parameter at Q.

Remarks 3.7.26.

(a) [Har77, p. 137, ch. II] Note that f ∗ : WDiv(Y ) → WDiv(X) preserves linear

equivalence and, therefore, it induces a morphism f ∗ : Cl(Y ) → Cl(X).

(b) [Har77, p. 148, ch. II, Exercise 6.8 or p. 299, ch. IV] If D is a divisor on Y , then

f∗(L(D)) ∼= L(f∗D).
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Proposition 3.7.27. [Har77, p. 138, ch. II, Proposition 6.9] Let f : C → C ′

be a finite morphism of smooth curves, and D ∈ WDiv(C ′). Then deg(f∗D) =

(deg f) · (degD).

On complete smooth curves it turns out that principal divisors have degree zero.

It therefore makes sense to restrict the above exact sequence to degree zero.

Corollary 3.7.28. [Har77, p. 138, ch. II, Corollary 6.10] A principal divisor on a

complete smooth curve has degree zero. Moreover, deg : Cl(X) → Z is a well-defined

and surjective group morphism.

Definition 3.7.29. Let C be a smooth curve. The subgroup of Weil divisors of

degree zero is denoted by WDiv0(C), and the quotient of WDiv0(C) with the subgroup

of principal divisors on C is denoted by Pic0(C).

Remark 3.7.30. If C is a complete smooth curve we have the following exact

sequence:

0 // F∗ � � // F(C)∗
f 7→div(f) // WDiv0(C) // // Pic0(C) // 0.

We have seen that if f : C → C ′ is a non-constant morphism of complete smooth

curves, we can transport Weil divisors from C ′ to C. We next want to show how to

transport Weil divisors from C to C ′:

Definition 3.7.31. Let f : C → C ′ be a non-constant morphism of smooth complete

curves. Define the map

f∗ : WDiv(C) → WDiv(C ′), [P ] 7→ [f(P )].

Proposition 3.7.32. Let f : C → C ′ be a finite morphism of smooth complete

curves. Then f∗ : WDiv(C) → WDiv(C ′) is a group morphism respecting linear

equivalence and degree, i. e. deg f∗(D) = degD and if D1 ∼ D2, then f∗(D1) ∼
f∗(D2).

Proof. The only thing to show is that f∗ respects linear equivalence. But this follows

from [Har77, p. 306, ch. IV, Exercise 2.6].

3.7.5 Intersection with Lines

Recall the definition of the intersection multiplicity iX,Y (Z) from Definition 3.2.32.

Using the Theorem of Bézout, we get the following result about the intersection of

a smooth curve with a line:

Proposition 3.7.33. Let C be a complete smooth curve in P2
F

of degree d and let

L,L′ ⊆ P2
F

be two lines defined by homogenous linear polynomials f, f ′ ∈ F[x, y, z]1.

Assume that neither L nor L′ is contained in C. Let P1, . . . , Pk be the intersection

points of C with L, and Q1, . . . , Q` be the intersection points of C with L′. Then
f
f ′ ∈ F(C),

k∑

i=1

iC,L(Pi) = d =
∑̀

i=1

iC,L(Qi)
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and

div

(
f

f ′

)
=

k∑

i=1

iC,L(Pi)[Pi] −
∑̀

i=1

iC,L(Qi)[Qi].

Proof. This follows from the Theorem of Bézout (Theorem 3.2.33) and [Har77,

p. 146, ch. II, Exercise 6.2].

We first need some preparation to be able to define the tangent hyperplane at

one point of a smooth variety in Pn
F
.

Lemma 3.7.34. Let f ∈ F[x0, . . . , xn]
h a homogenous polynomial and P = (p0 :

· · · : pn) ∈ Pn
F

such that f(P ) = 0. If pj 6= 0 for a j ∈ {0, . . . , n}, then

pj
∂f

∂xj
(P ) = −

n∑

i=0
i6=j

∂f

∂xi
(P )pi.

Proof. Let f be homogenous of degree d. If α = (α0, . . . , αn) ∈ Nn+1 with
∑n

i=0 αi =

d, then

n∑

i=0
i6=j

∂
(
xα
)

∂xi
(P )

pi
pj

=

n∑

i=0
i6=j

(
αix

αi−1
i

n∏

k=0
k 6=i

xαk
k

)
(P )

pi
pj

=
n∑

i=0
i6=j

pi
pj
αip

αi−1
i

n∏

k=0
k 6=i

pαk
k =

n∑

i=0
i6=j

αi
pj

(
xα
)
(P ) =

d− αj
pj

(
xα
)
(P )

=
d

pj

(
xα
)
(P ) − αj

∏n
i=0 p

αi
i

pj
=

d

pj

(
xα
)
(P ) − ∂

(
xα
)

∂xj
(P ).

Since differentiation and evaluation in P is F-linear, we get

n∑

i=0
i6=j

∂f

∂xi
(P )

pi
pj

=
d

pj
f(P ) − ∂f

∂xj
(P ) = − ∂f

∂xj
(P ).

Assume C is a smooth variety in Pn
F

defined by a homogenous polynomial f ∈
F[x0, . . . , xn], and let P = (p0 : · · · : pn) ∈ C(F). Moreover, assume that pi 6=
0. Consider the part of C in the hyperplane defined by xi 6= 0. It is defined

by the inhomogenous polynomial f |xi=1 ∈ F[x0, . . . , xi−1, xi+1, . . . , xn]. Let P̂ =

(p0/pi, . . . , pi−1/pi, pi+1/pi, . . . , pn/pi) ∈ An
F
. Since we assumed C to be smooth, at

least one of the partial differentiations
∂f |xi=1

∂xj
(P̂ ), j ∈ {0, . . . , n} \ {i}, is not zero.

Therefore, the tangent plane (in An
F
) is defined by

n∑

j=0
j 6=i

∂f |xi=1

∂xj
(P̂ )xj =

n∑

j=0
j 6=i

∂f |xi=1

∂xj
(P̂ )

pi
pj
.

Extending to projective space Pn
F
, this becomes the hyperplane defined by

n∑

j=0
j 6=i

∂f

∂xj
(P )xj −

n∑

j=0
j 6=i

∂f

∂xj
(P )

pi
pj
xi = 0.

119



Chapter 3. Algebraic Geometry

But by the lemma, this is exactly the hyperplane defined by

n∑

j=0

∂f

∂xj
(P )xj = 0,

which does not depend on i. This justifies the following definition:

Definition 3.7.35. Let C = VF(f), f ∈ F[x0, . . . , xn]
h be a smooth variety in

Pn
F

and P = (p0 : · · · : pn) ∈ C. Then the tangent hyperplane of C in P is the

hyperplane given by the equation

n∑

i=0

∂f

∂xi
(P )xi = 0.

If n = 2, then the tangent hyperplane is also called the tangent line.

We close with a result connecting the property of a line being tangent to a curve

in the projective plane with the intersection multiplicities from Bézout’s Theorem.

Proposition 3.7.36. Let C be a complete smooth curve in P2
F

of degree d > 1 and

P ∈ C. Let L be the tangent line. Then iC,L(P ) ≥ 2. Conversely, if L is a line

meeting C in P such that iC,L(P ) ≥ 2, then L is the tangent line of C in P .

Proof. This follows from [Har77, p. 54, ch. I, Exercise 7.3].

3.7.6 Genus and the Riemann-Roch Theorem

Let C be a complete smooth curve. An important invariant of such curves is the

genus. In topology the genus describes the number of holes something has; for

example, a disk has genus zero and a torus has genus one. We now state the definition

of the arithmetic genus of C, and show that it coincides with the geometric genus

we have defined before.

Definition 3.7.37. Let PC be the Hilbert polynomial of C, seen as a variety in

projective space. Define the arithmetic genus of C to be pa(C) := 1 − PC(0).

Proposition 3.7.38. [Har77, p. 294, ch. IV, Proposition 1.1] Let C be a complete

smooth curve. Then

pa(C) = pg(C) = dimFH
1(C,OC) ≥ 0,

where H1(C,OC) is the first cohomology group of OC (see [Har77, ch. III] for more

information about cohomology) and pg(C) the geometric genus of C (see Defini-

tion 3.5.42).

Definition 3.7.39. The genus of C is defined to be the arithmetic genus of C, being

the same as the geometric genus or as dimFH
1(C,OC).

The following proposition gives an easy way to determine the genus of a smooth

plane curve:
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Proposition 3.7.40. [Har77, p. 54, ch. II, Exercise 7.2(b)] Let C = VF(f) ⊆ P2
F

be a proper smooth curve, and let f be of degree d. (By Proposition 3.2.31, d is also

the degree of C.) Then the genus of C is given by

(d− 2)(d− 1)

2
.

Our next aim is to state the Riemann-Roch Theorem. It allows to compute

the dimension of the complete linear system of a divisor, which will be extremely

useful in Chapter 4. But first we have to define complete linear systems and their

dimensions.

Definition 3.7.41. Let D ∈ WDiv(C) be a divisor. The complete linear system of

D is the set

|D| := {D′ ∈ WDiv(C) | D′ ≥ 0, D′ ∼ D}.

Remark 3.7.42. [Har77, p. 295, ch. IV and p. 157, ch. II, Proposition 7.7] If D is

a divisor, then there is a one-by-one correspondence between |D| and (Γ(C,L(D)) \
{0})/F∗. The set Γ(C,L(D)) \ {0} can be identified with all rational functions f ∈
F(C) such that either f = 0 or div(f) ≥ −D.

Definition 3.7.43. Let D ∈ WDiv(C) be a divisor. Define

`(D) := dimF Γ(C,L(D)).

The dimension dim |D| of |D| is `(D) − 1.

Remark 3.7.44. [Har77, p. 295, ch. IV] For a divisor D the number `(D) is finite.

Finally, we can state the Riemann-Roch Theorem.

Theorem 3.7.45 (Riemann-Roch). [Har77, p. 295, ch. IV, Theorem 1.3] Let C

be a complete smooth curve over an algebraically closed field F and let D ∈ WDiv(C)

be a Weil divisor. Moreover, let KC be a canonical divisor on C and g be the genus

of C. Then

`(D) − `(KC −D) = degD − g + 1.

In practice we will need the following results, which mostly follow from the

Riemann-Roch Theorem. Note that in literature sometimes statement (d) is called

the Riemann-Roch Theorem, together with the inequality `(D) ≥ degD− g + 1 for

all Weil divisors D on C.

Proposition 3.7.46. [Sil86, pp. 38f] Let C be a complete smooth curve of genus g

with canonical divisor KC .

(a) If D ∈ WDiv(C) and degD < 0, then `(D) = 0. If D = 0, then `(D) = 1.

(b) It is `(KC) = g.

(c) It is degKC = 2g − 2.

(d) If degD > 2g − 2 for D ∈ WDiv(C), then `(D) = degD − g + 1.
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3.8 Curves over Rings

In this section we will study curves over rings. In the first subsection, we will study

curves over arbitrary fields, i. e. the fields do not have to be algebraically closed. In

the next subsection we provide tools to give explicit examples of generalized smooth

curves. We further give an interpretation of generalized smooth curves over Artinian

rings and provide information on KC and OC for curves over local Artinian rings.

In the last subsection we will state results for relative effective Cartier divisors on

generalized smooth curves.

We begin by defining what a generalized smooth curve is supposed to be. Gen-

eralized elliptic curves will be curves of this class.

Definition 3.8.1. [KM85, pp. 7f, Definition 1.2.1] Let S be any base scheme. A

generalized smooth curve C over S is a scheme C such that C → S is separated, of

finite presentation and smooth of relative dimension one.

3.8.1 Curves over Perfect Fields

In Section 2.2.3 we saw that the Galois theory can be used to describe intermediate

fields of a field extension K/F as the set of elements of K, which is fixed by a certain

subgroup of the F-automorphisms of K. We will use this where K is the algebraic

closure of F to inspect properties of curves over intermediate fields, when they are

defined over F. This will be important when we inspect elliptic curves over finite

fields.

Let F be a perfect field, and F the algebraic closure of F. Let G
F/F denote the

Galois group of the field extension F/F. By Proposition 2.2.38 we get that F/F
is a Galois extension and, hence, F consists exactly of the elements in F fixed by

all σ ∈ G
F/F.

We begin by defining when a curve and points of that curve are defined over (the

not necessarily algebraically closed) field F. (Note that in this definition, F does not

necessarily needs to be perfect.)

Definition 3.8.2. Let C be a curve over F. Then C is said to be defined over F if it

can be defined by polynomials over F. The F-rational points of C are, in the affine

case, points whose coordinates are in F and, in the projective case, points such that

one representative exists whose coordinates are in F.

Remark 3.8.3. [Sil86, p. 6 and p. 10] If P is a point in Pn
F

or An
F
, G

F/F induces

a natural action on P by defining P σ to be the point obtained from P by applying

σ ∈ G
F/F to all components of P . The point P is then defined over F if, and only if,

P = P σ for every σ ∈ G
F/F.

Remark 3.8.4. Note that if C is a curve defined over Fq, where q is a prime power,

then the Fq-linear q-th power Frobenius and the q-th power Frobenius coincide for

C.

We next want to draw a connection between generalized smooth curves over

Spec F and complete smooth curves defined over F.
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Proposition 3.8.5. A smooth curve C over F, which is defined over F, is a gen-

eralized smooth curve over S = Spec F or S = Spec F. Moreover, if C is complete,

then C → S is proper.

Proof. By Proposition 3.5.4 we know that C → S is quasi-projective. Clearly C

and S are Noetherian (see [Har77, p. 84, ch. II, Example 3.2.1]) and, thus, accord-

ing to Proposition 3.4.31, C → S is separated and of finite type. According to

Remark 3.4.26 (a), C → S is locally of finite presentation, and according to Re-

mark 3.4.26 (b), C → S is hence quasi-compact. Since C → S is separated, it is

also quasi-separated according to Remark 3.4.23, and, therefore, C → S is of finite

presentation according to Definition 3.4.25.

We first handle the case S = Spec F. Now F is algebraically closed and, hence,

the only geometric fibre of C → S is C/S itself. But by assumption C is a smooth

variety of dimension one and, therefore, by Theorem 3.4.41, C → S is smooth of

relative dimension one. For the case S = Spec F, note that the geometric fibre is the

curve seen over Spec F.

Now assume that C is complete. According to Proposition 3.7.3, in this case C

is projective. Then according to Proposition 3.5.4, C is a projective scheme and,

according to Proposition 3.4.31, the structure morphism C → S is proper.

We are next interested in regular functions defined over F, and in divisors defined

over F, which both turn out to have good properties.

Definition 3.8.6. Let C be a curve defined over F, and f : U → F be a regular

function, where U ⊆ C is an open subset. Then f is defined over F if f can be

represented locally by a quotient of polynomials with coefficients in F.

Denote with F(C) the set of rational functions f ∈ F(C), which are defined over

F, and with F[C] the set of regular functions f ∈ F[C], which are defined over F.

Remark 3.8.7. If C is a curve, then F(C) is a subfield of F(C). If C is an affine va-

riety defined by f1, . . . , fm ∈ F[x1, . . . , xn], then F[C] = F[x1, . . . , xn]/ 〈f1, . . . , fm〉,
and F(C) is the field of fractions of F[C].

Definition 3.8.8. Let C be a curve defined over F and D ∈ WDiv(C). If σ ∈ G
F/F

and D =
∑

P∈C nP [P ], define Dσ =
∑

P∈C nP [P σ]. The divisor D is said to be

defined over F if Dσ = D for every σ ∈ G
F/F.

Proposition 3.8.9. [Sil86, p. 40, Proposition 5.8] Let C be a complete smooth

curve defined over F and D ∈ WDiv(C) defined over F. Then there exists a basis

of Γ(C,L(D)), consisting of functions in F(C). If, moreover, f ∈ Γ(C,L(D)) is

defined over F, it can be described as an F-linear combination of this basis.

3.8.2 A Class of Curves over Rings

Let R be any ring and f ∈ R[x, y, z]h\R a homogenous polynomial which is primitive

over R. Define S = SpecR and C = ProjR[x, y, z]/ 〈f〉. We will now analyze which

properties are satisfied by C, S and the structure morphism C → S. Our aim is to

show that for certain choices of f we get that C/S is a proper smooth generalized

curve.
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As most of the following results hold for a more general case, we use a more

general homogenous polynomial f ∈ R[x0, . . . , xn]
h \R and scheme

C = ProjR[x0, . . . , xn]/ 〈f〉

until Proposition 3.8.14, were we restrict to the case n = 2.

Proposition 3.8.10. The morphism C → S is projective, proper and of finite

presentation.

Proof. That C → S is projective follows directly from Corollary 3.4.35, and that it is

proper follows directly from Proposition 3.4.28. Note that separated morphisms are

quasi-separated (Remark 3.4.23) and, since C is compact and S is affine, we get that

C → S is quasi-compact. To see that C → S is locally of finite presentation (and,

therefore, of finite presentation; see Definition 3.4.25 (c)), note that S = SpecR is

affine and C can be covered by the n+ 1 open affine subsets

Spec(R[x0, . . . , xn]/ 〈f〉)(〈xi〉),

and

(R[x0, . . . , xn]/ 〈f〉)(〈xi〉)
∼= R[x0, . . . , xi−1, xi+1, . . . , xn]/ 〈f |xi=1〉

are clearly R-algebras of finite presentations, i = 0, . . . , n.

Proposition 3.8.11. Assume f is a non-zero-divisor in R[x0, . . . , xn]. Then the

morphism C → S is flat.

Proof. Now by Corollary 2.3.17 (after defining x0 := x, x1 := y, x2 := z and n := 2)

we get that (R[x0, . . . , xn]/ 〈f〉)(x̂i), being isomorphic to

R[x0, . . . , xi−1, xi+1, . . . , xn]/ 〈f |xi=1〉 ,

is flat over R for 0 ≤ i ≤ n, where x̂i is the image of xi in R[x0, . . . , xn]/ 〈f〉.
But since ProjR[x0, . . . , xn]/ 〈f〉 is covered by the D+(x̂i)’s the claim follows from

Proposition 3.4.37.

Remark 3.8.12. Let R be Artinian. Then since f is primitive it is a non-zero-

divisor according to Corollary 2.4.5.

The (geometric) fibres of C → S are in fact varieties over (algebraically closed)

fields:

Proposition 3.8.13. Let f ∈ R[x0, . . . , xn]
h \ R. Assume that f mod m defines

a variety over R/m for every maximal ideal m of R. Then the geometric fibre of

C → S at a maximal ideal m in R is the variety generated by f mod m over R/m.

Here R/m denotes the algebraic closure of R/m.

Proof. Let m be a maximal ideal of R, and ϕ : R�R/m ↪→R/m. By Proposi-

tion 3.4.11 we get

ProjR[x0, . . . , xn]/ 〈f〉 ×SpecR SpecR/m

= ProjR/m[x0, . . . , xn]/ 〈ϕ(f)〉 =: X.

But now R/m = k(m) and, therefore, X is the geometric fibre of C → SpecR at m.

Since we have ϕ(f) = f mod m, we get from Remark 3.5.5 (b) that X corresponds

to the projective variety generated by f mod m.
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We can now state a criterion when f defines a generalized smooth curve over R:

Proposition 3.8.14. Assume that f is a non-zero-divisor in R[x, y, z] (if R is

Artinian, it is enough for f to be primitive over R). Moreover, assume that f

mod m defines a smooth variety of dimension one over R/m for every maximal

ideal m of R. Then C → S is a proper generalized smooth curve. Again R/m

denotes the algebraic closure of R/m.

Proof. This follows directly from the previous Propositions 3.8.10, 3.8.11 and 3.8.13,

and from Theorem 3.4.41.

Remark 3.8.15. Assume R is an Artinian ring and, moreover, assume that f

satisfies the assumptions of Proposition 3.8.14. Then C and S can be interpreted as

follows:

(a) Since R is an Artinian ring, we can write R =
∏n
i=1Ri with local Artinian

rings Ri, whose only prime ideal is their maximal ideal mi. Therefore (see

Lemma 3.3.35), S is a finite set of points, namely {m1, . . . ,mn}, and the topology

is the discrete topology.

(b) The fibre of C → S in a maximal ideal m of R is the curve defined by f mod m,

now seen over the field R/m. The geometric fibre in m is the curve defined by

f mod m over the algebraic closure of R/m. These are curves in the “classical”

sense, as in Section 3.7 or Section 3.8.1.

(c) An R-rational point s ∈ C(S) is a “selection function”: for every maximal

ideal m of R and, therefore, for every curve defined by fm over the local Artinian

ring Rm, m ∈ SpecR, it gives one Rm-rational point on this curve.

(d) One could interpret C/S as the “disjoint union” of the curves C×SpecR SpecRm

over the local Artinian rings Rm, or as the “disjoint union” of the curves Cm =

C ×SpecR SpecR/m over the fields R/m.

A more geometric interpretation for when R is a local Artinian ring can be found

in Section 4.3.4.

Before continuing we want to give an example:

Example 3.8.16. Consider the Artinian ring R = Z12, whose decomposition is

R = Z4 × Z3 by the Chinese Remainder Theorem (Proposition 2.5.6), since Z4 is a

local ring and Z3 is a field (see Lemma 2.5.7). Therefore, the maximal ideals of R

are 〈2〉 and 〈3〉.
Consider the polynomial f = y2z − x3 ∈ R[x, y, z] (which is obviously a non-

zero-divisor), and the curve C = ProjR[x, y, z]/ 〈f〉 over S = SpecR. The curve C

is thus the disjoint union of the curves

C1 = Proj Z3[x, y, z]/ 〈f〉 and C2 = Proj Z4[x, y, z]/ 〈f〉

over the bases S1 = Spec Z3 and S2 = SpecZ4, respectively, and the fibre of C → S in

〈2〉 is the curve Proj Z2[x, y, z]/ 〈f〉 over Spec Z2, since R〈2〉 = Z4 and R〈2〉/ 〈2〉R〈2〉 ∼=
Z4/ 〈2〉 ∼= Z2.
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Over Z3 the curve defined by y2z = x3 has the points

(0 : 0 : 1), (1 : 1 : 1) and (0 : 1 : 0).

Over Z2 the curve has the points

(0 : 0 : 1), (1 : 1 : 1) and (0 : 1 : 0).

And finally over Z4 the curve has the points

(0 : 0 : 1), (0 : 2 : 1), (2 : 2 : 1), (2 : 0 : 1),

(1 : 1 : 1), (1 : 3 : 1), (0 : 1 : 0), (2 : 1 : 0).

Note that every point over Z4 reduces to a point over Z2 by the canonical reduction

map. Moreover, this map is surjective and both the points (1 : 1 : 1) and (0 : 1 : 0)

have exactly two preimages, while (0 : 0 : 1) has four preimages. In Lemma 4.3.11

we will see that the first case is the usual one, while the second can only occur in

points where the curve is not smooth over Z2. In fact, one can easily check that the

curve f = 0 is not smooth in (0 : 0 : 1) over any field F.

From the above we now know that |C(S)| = |C1(S1)| · |C2(S2)| = 3 · 8 = 24.

From now on we will give some more information about KC for the case that R

is a local Artinian ring.

Proposition 3.8.17 (J. Walker). [Wal99, p. 95, Lemma 4.1] Let f : C → S be

a smooth morphism of locally Noetherian schemes, where S = SpecR with a local

Artinian ring R, and let C be irreducible. Then KC is constant, i. e. if U is an open

connected subset of C, then KC(U) ∼= KC,x for every x ∈ C.

Proof. Since C is irreducible, it has a unique generic point. Therefore, it is enough

to show that KC is locally constant. Let C = SpecT with an R-algebra T . Since f is

flat, T is flat over R. Let m be the maximal ideal of R. Clearly T ⊗RR/m ∼= T/mT

and, hence, by Remark 3.4.40 (d) we get that T/mT is regular and, therefore, reduced

by Corollary 2.3.27. Since SpecT has a unique generic point, T has a unique minimal

prime p and, therefore, we have p ⊆ mT . But m is nilpotent by Lemma 2.2.21 and,

therefore, p = mT . Since T is Noetherian, by Proposition 2.3.40, an element of T is

a zero-divisor if, and only if, it is nilpotent.

Thus, every localization of T at a prime ideal is a subring of the total quotient

ring of T and, therefore, the total quotient ring of any localization at a prime is

equal to the total quotient ring of T itself. Therefore, KSpecT is constant.

Corollary 3.8.18. Let R be a local Artinian ring with maximal ideal m. Let S =

SpecR and C = ProjT , where T := R[x0, x1, x2]/ 〈f〉 and f ∈ R[x0, x1, x2]
h is as

in Proposition 3.8.14. Then for every x ∈ C we have

KC,x =
{g
h
g, h ∈ T h, deg g = deg h, h 6∈ mT

}

and K∗
C,x =

{g
h
g, h ∈ T h, deg g = deg h, g, h 6∈ mT

}
.

Moreover, if x belongs to a point P ∈ P2
R in the sense of Proposition 3.6.7, we have

OC,x =
{g
h
g, h ∈ T h, deg g = deg h, h(P ) 6∈ m

}

and O∗
C,x =

{g
h
g, h ∈ T h, deg g = deg h, g(P ), h(P ) 6∈ m

}
.
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(Note that it makes sense to ask g(P ) ∈ m.)

Moreover, g ∈ T h is in mT if, and only if, it is nilpotent, and this is the case if,

and only if, it is a zero-divisor.

Proof. If KC,x and OC,x have the given form, clearly so have K∗
C,x and O∗

C,x. Since f

is prime modulo m, we have that 〈m, f〉 is a prime ideal in R[x0, x1, x2] and, hence,

mT is prime in T . By Proposition 3.3.24 (a),

OC,mT =
{g
h
| g, h ∈ T h, deg g = deg h, h 6∈ mT

}

and, by Proposition 3.8.17 and its proof, the form of KC,x for all x ∈ C follows.

The proof also implies the last statement. If x belongs to a point P ∈ P2
R, then

x =
〈
{f ∈ T h | f(P ) ∈ m}

〉
and, therefore, the form of OC,x follows again from

Proposition 3.3.24.

3.8.3 Relative Effective Divisors

As noted in Section 3.5.2 we cannot use Weil divisors on curves over rings; rather

we have to use Cartier divisors. Since curves C over rings as in the last subsection

can be seen as a flat family of curves over a base scheme SpecR, we want to use

relative effective Cartier divisors, since they in fact give families of effective Cartier

divisors on the fibres of C → SpecR.

We first begin by associating a relative effective Cartier divisor with every point,

and characterizing when a relative effective Cartier divisor is proper over S.

Proposition 3.8.19. Let C be a generalized smooth curve over S.

(a) [KM85, p. 8, Lemma 1.2.2] Any S-rational point s ∈ C(S) defines a relative

effective Cartier divisor on C/S.

(b) [KM85, p. 8, Lemma 1.2.3] Let D be a closed subscheme of C, which is of finite

type over S and of finite presentation over S. Then D is a relative effective

Cartier divisor on C/S, which is proper over S.

(c) [KM85, p. 8, Lemma 1.2.3] If D is a relative effective Cartier divisor on C/S,

which is proper over S, then D is of finite type over S and of finite presentation

over S.

Definition 3.8.20. Let C be a generalized smooth curve over S and s ∈ C(S) an

S-rational point. The relative effective Cartier divisor defined by s as in the previous

proposition, is denoted by [s].

Remark 3.8.21. [KM85, p. 9, Remark 1.2.4] If C is a proper generalized smooth

curve over S, then every relative effective Cartier divisor is proper over S.

For Weil divisors it is easy to define a degree: it is simply the sum over all

coefficients of the prime divisors. For proper relative effective Cartier divisors one

can also define a degree:
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Proposition 3.8.22. [KM85, p. 9, Definition 1.2.5] Let C be a generalized smooth

curve over S, and D a relative effective Cartier divisor on C/S, which is proper

over S. Denote the structure morphism of C/S with f . If U = SpecR is an open

affine subset of S, then the affine ring OD(f−1(U)) of D is a locally free R-module

of finite rank, and this rank is Zariski locally constant on S.

Definition 3.8.23. Let C be a generalized smooth curve over S and D a relative

effective Cartier divisor on C/S. The degree of D, denoted by degD, is the Zariski

locally constant function on S given by the previous proposition.

It turns out that the proper relative effective Cartier divisors of (constant) de-

gree one correspond to the S-rational points of C, if C/S is a generalized smooth

curve:

Proposition 3.8.24. Let C be a generalized smooth curve over S.

(a) [KM85, p. 9, Lemma 1.2.6] If D1 and D2 are relative effective Cartier divisors

on C/S, which are proper over S, then D1 + D2 is again proper over S and

deg(D1 +D2) = degD1 + degD2.

(b) [KM85, p. 10, Lemma 1.2.7] If s ∈ C(S) is an S-rational point, then [s] is

proper over S and has degree one.

(c) [KM85, p. 10, Lemma 1.2.7] If D is a relative effective Cartier divisor on C/S,

which is proper over S and has degree one, than there exists a unique S-rational

point s ∈ C(S) such that [s] = D.

Before closing this section we state two results on transporting relative effective

Cartier divisors via S-morphisms between generalized smooth curves over S.

Proposition 3.8.25. (See also Proposition 3.5.35 (d).)

(a) [KM85, p. 11, Lemma 1.2.8] Let C and C ′ be generalized smooth curves over

S, and f : C → C ′ an S-morphism which is finite, flat, and of degree d. Let

D be a relative effective Cartier divisor on C ′/S, which is proper over S. Then

f∗(D) is a relative effective Cartier divisor on C/S, proper over S, having de-

gree deg f∗(D) = d · degD.

(b) [KM85, p. 12, Lemma 1.2.9] If C is a generalized smooth curve over S, D is a

relative effective Cartier divisor on C/S, which is proper over S, and T → S is

an arbitrary morphism, then the base change DT is a relative effective Cartier

divisor on CT /T , proper over T , of degree degD.

3.9 Group Schemes and Abelian Schemes

In this section we want to present group schemes and Abelian schemes. For this

we first start with looking at group objects in arbitrary categories. This will be

done in Section 3.9.1, while in Section 3.9.2 we apply the results to the category of

S-schemes for a base scheme S and state several results on special group objects in

that category. The last subsection will give important examples that we will need

later. But first, we want to point out some properties of the category of S-schemes.
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Let S be a scheme, and consider the category Sch(S) of schemes over S. Clearly,

in Sch(S) the base S is a final object, as for any S-scheme X there exists exactly

one S-morphism f : X → S, namely, the structure morphism of S. Moreover, note

that in the category of S-schemes, the categorical product of two S-schemes X and

Y is the fibred product X ×S Y over S (see also Remark 3.4.2 (c)).

3.9.1 Group Objects and Representable Functors

For any category C with a final object S we naturally have that G × S ∼= G for

every object G of C . Recall that C op denotes the opposite category of C . Let

F : C op → Set be a functor. Then F is called representable by an object O of C if

there exists an isomorphism F → HomC (−, O) of functors.

Definition 3.9.1. Let C be a category with a final object S, and in which finite

products G×G and G×G×G exist for all objects G of C .

(a) An object G of C is called a group object in C if there are morphisms m :

G × G → G, i : G → G and e : S → G such that the following diagrams

commute:

G×G×G
m×idG //

idG×m
��

G×G

m

��
G×G

m // G

G
(idG,i) //

��

G×G

m

��

G
(i,idG) //

��

G×G

m

��
S

e // G S
e // G

G
∼= //

idG

��

G× S

idG×e
��

G
∼= //

idG

��

S ×G

e×idG

��
G G×Gm

oo G G×Gm
oo

If we use a group object G in the following, we will denote m by mG, i by iG

and e by eG, without specifying again what they are.

(b) A group object G is commutative if mG ◦ w = mG, where w : G×G → G ×G

switches the operands.

(c) Let G and H be two group objects in C . A homomorphism of group objects

is a morphism f : G → H, such that f ◦ eG = eH ◦ f , f ◦ iG = iH ◦ f and

f ◦mG = mH ◦ (f × f).

Let C be a category and X ∈ C . Define the functor

hX : C → Set, A 7→ HomC (A,X), (A
f→ B) 7→ (g 7→ f ◦ g).

Now let f : X → Y be a morphism in C . Then there is a natural transforma-

tion hX → hY , defined by HomC (A,X) → HomC (A, Y ), g 7→ f ◦ g for every A ∈ C .

129



Chapter 3. Algebraic Geometry

Proposition 3.9.2 (Yoneda’s Lemma). [BLR90, p. 95, Proposition 1] Let C be

a category and let Ĉ denote the category Hom(C op,Set). Then for any X ∈ C , and

any H ∈ Ĉ , there is a natural bijection H(X) → Hom
Ĉ
(hX , H), with the following

property:

If u ∈ H(X), then u is mapped onto the natural transformation hX → H, which

satisfies that g ∈ hX(A) is mapped onto H(g)(u) ∈ H(A).

Corollary 3.9.3. Let C be a category and let Ĉ denote the category Hom(C op,Set).

Define a functor

h : C → Ĉ , X 7→ hX ,

which maps a morphism f : X → Y to the natural transformation hX → hY . Then

h is fully faithful.

Remark 3.9.4. The functor h from the corollary is called the contravariant Yoneda

embedding of C into Ĉ = Hom(C op,Set).

Remark 3.9.5. [BLR90, p. 96] The functor h from the corollary commutes with

direct products, i. e. if X ×X exists in C , then h(X ×X) = h(X) × h(X).

With Yoneda’s Lemma we can draw a close connection between representable

functors into Grp and group objects:

Proposition 3.9.6. [Oor66, I.1-1f] Let C be a category as in Definition 3.9.1.

Then group objects in C correspond to representable functors F : C op → Grp; here

Grp denotes the category of groups, and ‘representable’ means that the functor U ◦F
is representable, where U : Grp → Set is the forgetful functor3. The commutative

group objects correspond to representable functors F , that factor through Ab, the

category of Abelian groups, in the sense that there exists a functor G : C op → Ab

such that F = ι ◦G, where ι : Ab → Grp is the inclusion functor.

Proof. Given a group object G, one can make the functor HomC (−, G) into a func-

tor C → Grp by defining a composition law for every object X ∈ C by

HomC (X,G) × HomC (X,G) → HomC (X,G), (f, g) 7→ m(f, g).

The commuting diagrams in the definition of a group object show that this com-

position law is a group law. Clearly, if the group object is commutative, then the

resulting groups are also commutative.

Conversely, let F : C → Grp be a functor that is represented by an object G ∈ C .

The group law gives a natural map

HomC (A,G) × HomC (A,G) → HomC (A,G)

for every object A ∈ C , which form a natural transformation hG × hG → hG. Now,

by Remark 3.9.5, we have hG × hG = hG×G and, therefore, by Corollary 3.9.3, we

get that the natural transformation hG × gG → hG corresponds to a morphism m :

G×G→ G in C . By the same construction, the inversion morphism on HomC (A,G),

3The forgetful functor U : Grp → Set assigns its underlying set to every group, and its underlying

map between sets to every group morphism. Therefore, it “forgets the group structure”.
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A ∈ C gives a morphism i : G → G. Now S is a final object in C and, therefore,

HomC (A,S) = 0, A ∈ C . But then there is a natural transformation hS → hG

corresponding to a morphism e : S → G.

We will show that G, together with the morphisms m : G×G → G, i : G → G

and e : S → G, defines a group object in C . We show this exemplary for the first

diagram in Definition 3.9.1 (a). Let m̂ : hG×hG → hG be the natural transformation

corresponding to the group law. Consider the natural transformations

m̂× id : (hG × hG) × hG → hG × hG

and

id × m̂ : hG × (hG × hG) → hG × hG.

Clearly the diagram

(hG × hG) × hG
m̂×id // hG × hG

m̂

��

hG × (hG × hG)

id×m̂
��

hG × hG m̂
// hG

of natural transformations commutes. But now, by using hG × hG = hG×G and

hG × hG × G = hG×G×G, we see that the first diagram in Definition 3.9.1 (a),

mapped by h, results in this commuting diagram. Since h is fully faithful, the first

diagram in Definition 3.9.1 (a) also commutes.

3.9.2 Group Objects in the Category of S-Schemes

We now apply the results from the last subsection to the category Sch(S) of S-

schemes. We saw at the beginning of this section that Sch(S) satisfies all assump-

tions of Proposition 3.9.6.

Definition 3.9.7. A group scheme over S is a group object in the category Sch(S).

Moreover, an Abelian scheme X over S is a group scheme of finite type over S,

which has connected fibres and which is smooth and proper over S.

Remark 3.9.8. [Oor66, I.1-3] For group schemes, ‘geometrically connected fibres’

and ‘connected fibres’ are the same concepts.

It turns out that Abelian schemes have many interesting properties, which also

justify why they are called Abelian:

Proposition 3.9.9. Let X be an Abelian scheme. Assume that S is Noetherian,

and that X is locally Noetherian.

(a) [MFK65, p. 117, Corollary 6.4] Let G a group scheme over S, which is locally

Noetherian, and let f : X → G be an S-morphism. Assume that f satisfies

f ◦ eX = eG. Then f is a homomorphism.

(b) [MFK65, p. 117, Corollary 6.5] The group structure of X is commutative.
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(c) [MFK65, p. 117, Corollary 6.6] If m′ is another group law on X with the same

identity eX , then m′ = mX .

We will see in Chapter 4 that (generalized) elliptic curves are an example of an

Abelian scheme.

3.9.3 Examples for Functors

We will now give three examples of functors. The third one will be the one we need

in Chapter 4, where we will show how it can be represented in some cases.

Examples 3.9.10. Let X → S be a flat morphism of schemes, which is of finite

presentation.

(a) According to [BLR90, p. 214], we have a functor

CDivX/S : Sch(S)op → Set, S′ 7→ CDiv(XS′/S′),

where CDiv(X/S) denotes the set of relative effective Cartier divisors on X over

S.

(b) Moreover, consider the functor

PicX/S : Sch(S)op → Ab, S′ 7→ Pic(XS′)/Pic(S′),

where Pic(S) is seen as a subgroup of Pic(X) by use of f ∗ : Pic(S) → Pic(X)

(see Proposition 3.5.27).

Example 3.9.11. Let X be a generalized smooth curve, which is proper over S

and has geometrically connected fibres, and let k ∈ Z be any integer. Note that for

an invertible sheaf on X one can define a degree for every fibre over S (see [Har77,

p. 149, ch. II, Exercise 6.12], as each fibre of X is a proper smooth curve over a

field; or take a generalization of [KM85, p. 9, Definition 1.2.5] or Proposition 3.8.22

to arbitrary invertible sheaves). Consider the functor

Pic
(k)
X/S : Sch(S)op → Set, S′ 7→ Pic(k)(XS′/S′) := Pic(k)(XS′)/∼,

where Pic(k)(X) denotes the subset of Pic(X) of isomorphism classes of invertible

sheaves, which are fibre-by-fibre of degree k, and where [L] ∼ [L′] if, and only if,

there exists an invertible sheaf L0 on S′, such that L ∼= L′⊗ f∗(L0) (see [KM85,

p. 64]). For k = 0 the functor Pic
(0)
X/S factors through Ab.

We will see in the next chapter that if X is a generalized elliptic curve over S,

then Pic
(0)
X/S is represented by X and, therefore, X/S is an Abelian scheme. This

demonstrates how useful Proposition 3.9.6 is to show that an object G ∈ C is a

group object, i. e. there exist morphisms m : G×G→ G, i : G→ G and e : S → G

which satisfy the requirements of Definition 3.9.1 (a). One ‘just’ has to show that

G represents a functor C → Ab.
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Chapter 4

Elliptic Curves

4.1 Definition of Elliptic Curves

We now want to use the tools developed in the last chapters to analyze elliptic curves.

The special property of an elliptic curve over a field F is that for any extension field K
of F, the set of K-rational points can be turned into a group in a natural way. We

begin by defining what an elliptic curve is.

Definition 4.1.1. Let F be a field. An elliptic curve E (defined over F) is a complete

smooth curve of genus one defined over F, given with an F-rational point ∞ ∈ E(F).

It is often useful to embed an object of interest into a larger context. An exam-

ple are schemes: one embeds the category of varieties into the larger categories of

schemes. For this we first want to generalize the notion of an elliptic curve to this

larger category, by defining a “generalized” elliptic curve over a base scheme as in

[KM85, Section 2].

Definition 4.1.2. Let S be an arbitrary scheme, E be a proper smooth curve over

S, and let ∞ ∈ E(S) be a global section. Then (E/S,∞) or simply E/S is called a

generalized elliptic curve if the fibres of E are geometrically connected and of genus

one.

Remarks 4.1.3.

(a) Note that sometimes in the literature the terminus ‘generalized elliptic curve’ is

used in another way. In this thesis we use the added ‘generalized’ to emphasize

that the usual elliptic curves over a field are special cases of such elliptic curves.

(b) Let S be any scheme and E a proper smooth curve over S. The condition that

the fibres of E are geometrically connected and of genus one means that the

geometric fibres of E are elliptic curves (in sense of Definition 4.1.1) over an

algebraically closed field. Moreover, the fibre is an elliptic curve defined over

the residue field at that point.

That a generalized elliptic curve is indeed a generalization of an ordinary elliptic

curve (over a field) can be seen from the following two results:

Proposition 4.1.4. Let (E,∞) be an elliptic curve over F. Then E is a generalized

elliptic curve.
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Proof. By Proposition 3.8.5, E → Spec F is a proper smooth curve. Since ∞ is a

F-rational point, it clearly is a section in E(Spec F) (see Proposition 3.6.8).

Proposition 4.1.5. Let (E,∞) be a generalized elliptic curve over S = Spec F for

an algebraically closed field F. Then (E,∞) is an elliptic curve (in the sense of

Definition 4.1.1). If F is not algebraically closed, then the geometric fibre of E at

the only point of S is an elliptic curve (in the sense of Definition 4.1.1) defined over

F.

Proof. In this case E is equal to the fibre of E at the only point of S, which equals

the geometric fibre of E at this point. But by Remark 4.1.3 (b) this is an elliptic

curve. The second statement also follows from this remark.

4.1.1 The Group Law

As already mentioned, there is a natural group structure associated to the K-rational

points of an elliptic curve over a field F, where K is an extension field of F. This is

also true for generalized elliptic curves, as Katz and Mazur have shown with their

following theorem:

Theorem 4.1.6 (Abel). [KM85, p. 63, Theorem 2.1.2] Let (E,∞) be a generalized

elliptic curve over a base scheme S, with structure morphism f : E → S. Then there

exists a unique structure of commutative group scheme on E over S, such that for

any S-scheme T , and any three points P,Q,R ∈ ET (T ), we have P +Q = R if, and

only if, there exists an invertible sheaf L0 on T and an isomorphism of invertible

sheaves on ET such that

I
−1
[P ] ⊗I

−1
[Q] ⊗I[∞T ]

∼= I
−1
[R] ⊗ f∗T (L0).

Idea of Proof (as in [KM85, pp. 63ff, Proof of Theorem 2.1.2]). Recall that in Ex-

ample 3.9.11 we defined Pic(k)(ET /T ) for k ∈ N and an S-scheme T as the set of

isomorphism classes of invertible sheaves on ET , which are fibre-by-fibre of degree k,

modulo the relation L ∼ L′ if there exists an invertible sheaf L0 on T , such that

L ∼= L′⊗ f∗(L0). The proof proceeds in three steps:

(1) The idea is to show that the map

E(T ) → Pic(1)(ET /T ), P 7→ [I −1
[P ] ]

is bijective. Then by composition with the bijection

Pic(1)(ET /T ) → Pic(0)(ET /T ), [L] 7→ [L⊗I[∞]],

we have a bijective map E(T ) → Pic(0)(ET /T ). Now Pic(0)(ET /T ) is an

Abelian group and, moreover, this construction is clearly functorial (note Ex-

ample 3.9.11) and hence gives a contravariant functor Sch(S)op → Ab, which

is represented by E. By Proposition 3.9.6 we have, therefore, shown the exis-

tence of the group law. Moreover, the uniqueness is given by the definition of

Pic(0)(ET /T ), the definition of the map E(T ) → Pic(0)(ET /T ), and the relation

I
−1
[P ] ⊗I

−1
[Q] ⊗I[∞T ]

∼= I
−1
[R] ⊗ f∗T (L0)

for some invertible sheaf L0 on T .
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(2) To show that E(T ) → Pic(1)(ET /T ) is bijective, one first reduces to T = S by

base extension, as E(T ) = ET (T ).

The next step is to show that we can assume S to be affine by showing that the

question is local on S: for that assume L1 and L2 are invertible sheaves on E,

that Ui, i ∈ I, is an open covering of S, and that we have invertible sheaves L0,i

on Ui and isomorphisms L1|f−1(Ui)
∼= L2|f−1(Ui) ⊗f−1(Ui) f

∗(L0,i). We have to

show that there exists an invertible sheaf L0 on S such that L1
∼= L2 ⊗OE

f∗(L0).

For a proof of this see [KM85, pp. 65f].

(3) Thus, we can assume S = SpecR, and R can be assumed to be Noetherian

[GD67, p. 34, Proposition 8.9.1] since f : E → S is of finite presentation.

As the last step (which is the largest part of the proof), one shows that the map

is bijective by explicitly constructing its inverse. This construction can be found

in [KM85, pp. 66f].

Remarks 4.1.7.

(a) In the group law in the theorem, ∞T is the neutral element, as for every P ∈
E(T ) we have

I
−1
[P ] ⊗I

−1
[∞T ] ⊗I[∞T ]

∼= I
−1
[P ]

∼= I
−1
[P ] ⊗ f∗T (OET

).

(b) By [KM85, p. 77, Theorem 2.5.1] this is the only way to make E/S into a com-

mutative group scheme, which has ∞ as its neutral element. In the case that

S is Noetherian and E is locally Noetherian, this also follows from Proposi-

tion 3.9.9 (c).

In Section 4.2.2 (Corollary 4.2.10) we will give a complete proof for the special

case that (E,∞) is an elliptic curve (in the sense of Definition 4.1.1) using the

Riemann-Roch Theorem.

If R1 and R2 are two rings, then S = Spec(R1 × R2) is the disjoint union of

SpecR1 and SpecR2 by Lemma 3.3.35. If E is a curve over S with structure mor-

phism f , then E is the disjoint union of E1 := f−1(SpecR1) and E2 := f−1(SpecR2).

If E/S is a generalized elliptic curve, then E1/ SpecR1 and E2/ SpecR2 are also gen-

eralized elliptic curves. The following corollary relates the group scheme of E/S with

the ones of E1/ SpecR1 and E2/ SpecR2.

Corollary 4.1.8. Let (E,∞) be a generalized elliptic curve over S = Spec(R1×R2),

and let f : E → S be the structure morphism. Then Ei := E|f−1(SpecRi) is a

generalized elliptic curve over Si = SpecRi, i = 1, 2, and the group law on E/S is

the product of the group laws on E1/S1 and E2/S2, in the sense that the group E(S)

is naturally isomorphic to the product E1(S1) × E2(S2).

Proof. There is a natural bijection E(S) ∼= E1(S1) × E2(S2), since S is the disjoint

union of S1 and S2 (see Lemma 3.3.35) and, therefore, E is the disjoint union of E1

and E2, and both Si and Ei, i = 1, 2 are both closed and open in S or E, respectively.

To see that this bijection is a group morphism, note that by the Proof of Theo-

rem 4.1.6, the group law is local on S.
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Now assume that S = SpecR with Pic(S) = 0. (Recall that in Section 2.4 we

characterized this condition; see also Corollary 3.5.3.) In this case every invertible

sheaf on S is isomorphic to OS . Therefore, f∗(L0) is always isomorphic to OE

for every invertible sheaf L0 on S (see Proposition 3.5.27). Therefore we have the

following:

Corollary 4.1.9. Let (E,∞) be a generalized elliptic curve over a base S = SpecR

with Pic(S) = 0 (see Corollary 3.5.3). Then three sections A,B,C ∈ E(S) satisfy

A+B = C if, and only if,

I
−1
[A] ⊗I

−1
[B]

∼= I
−1
[C] ⊗I

−1
[∞],

where the isomorphism is a isomorphism of invertible sheaves on E. By Proposi-

tion 3.5.31, this is the case if, and only if,

L([A] + [B]) ∼= L([C] + [∞])

or, equivalently,

[A] + [B] ∼ [C] + [∞].

Recall that a field F trivially fulfills Pic(Spec F) = 0 by Proposition 2.4.27 and

Corollary 3.5.3.

4.2 Elliptic Curves over Fields

We first want to investigate the case of elliptic curves over fields. Most of the material

in this section is quite standard and can be found in many textbooks, for example

[Sil86]. It turns out that many of these results can be generalized for generalized

elliptic curves, as in the book of Katz and Mazur (see [KM85, Chapter 2]). As we

will not need these generalized results, we refer the interested reader to the book

of Katz and Mazur. However, we will mention some of these results at appropriate

places.

4.2.1 Weierstraß Equation

In this section we will investigate curves defined by so-called Weierstraß equations.

We will get an explicit criterion when such a curve is smooth, and we will see that

the smooth ones of these curves are, up to isomorphism, exactly the elliptic curves.

Definition 4.2.1. Let R be any ring. Then a equation of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3,

where a1, a2, a3, a4, a6 ∈ R, is called a Weierstraß equation over R. Define the values

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,

∆ = − b22b8 − 8b34 − 27b26 + 9b2b4b6

and j = c34/∆.
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Then ∆ is called the discriminant and j the j-invariant for this Weierstraß equation.

An equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is called an inhomogenous Weierstraß equation.

Definition 4.2.2. Let P = (x : y : z) ∈ P2
F
. Then P is called finite or affine if

z 6= 0, and otherwise infinite or a point at infinity.

Let E be a curve defined by a Weierstraß equation over a field F. Our aim is to

show that the curve is smooth if, and only if, ∆ 6= 0. In this process we also derive

some normal forms that can be assumed for special characteristics; the results will

be presented in Corollary 4.2.8. We follow the discussion in [Sil86, pp. 46–51 and

pp. 324ff].

To show this we use the Jacobian criterion from Theorem 3.2.28 and we dis-

tinguish the two cases whether the characteristic of F is two or not. But before

that, note that if (x : y : 0) ∈ E(F), then 0 = f(x, y, 0) = −x3 and, thus,

(x : y : 0) = (0 : y : 0). Therefore, E has exactly one infinite point ∞ := (0 : 1 : 0).

Characteristic of F is 6= 2: In this case 2 is invertible in F and we use this fact

to complete the square:

y2 + (a1x+ a3z)y =
(
y + a1x+a3z

2

)2 −
(
a1x+a3z

2

)2

=
(
y + a1x+a3z

2

)2 − a2
1x

2 + 2a1a3xz + a2
3z

2

4
.

Consider the linear map

ϕ : 〈x, y, z〉
F
→ 〈x, y, z〉

F
,





x 7→ x,

y 7→ 1
2y − a1x+a3z

2 ,

z 7→ z,

which is clearly bijective since the associated matrix has determinant 1
2 . We get

f ◦ ϕ = 1
4y

2z − 1
4a

2
1x

2z − 1
2a1a3xz

2 − 1
4a

2
3z

3 − x3 − a2x
2z − a4xz

2 − a6z
3

= 1
4y

2z − x3 −
(

1
4a

2
1 + a2

)
x2z −

(
1
2a1a3 + a4

)
xz2 −

(
1
4a

2
3 + a6

)
z3

= 1
4y

2z − x3 − 1
4b2x

2z − 1
2b4xz

2 − 1
4b6z

3.

Hence, E is smooth if, and only if, the curve Ê defined by y2z = 4x3 + b2x
2z +

2b4xz
2+b6z

3 is smooth (this follows from the Jacobian criterion in Theorem 3.2.28).

Let g := y2z − 4x3 − b2x
2z − 2b4xz

2 − b6z
3. Then we have

∂g

∂x
= − 12x2 − 2b2xz − 2b4z

2,

∂g

∂y
= 2yz

and
∂g

∂z
= y2 − b2x

2 − 4b4xz − 3b6z
2.

If we consider the only infinite point ∞ = (0 : 1 : 0) ∈ Ê(F), we see that ∂g
∂z (0, 1, 0) =

1, and therefore Ê is smooth at ∞. If we consider (x : y : 1) ∈ Ê(F) for y 6= 0, we
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see that ∂g
∂y (x, y, 1) = 2y 6= 0; thus the only points where Ê might not be smooth

are the ones of the form (x : 0 : 1). Consider the polynomial

g(x, 0, 1) = −4x3 − b2x
2 − 2b4x− b6 ∈ F[x].

The curve is smooth if, and only if, this polynomial and its derivative with respect

to x have no common roots in F (since ∂g(x,0,1)
∂x (x) = ∂g

∂x(x, 0, 1)), which is the

case if, and only if, the polynomial has only simple roots. By Corollary 2.1.16 the

polynomial has only simple roots if, and only if,

0 6= Res
(
g, ∂g∂x

)
= (−4)5

(
4(1

4b2)
3(1

4b6) − 18(1
4b2)(

1
2b4)(

1
4b6)

+ 27(1
4b6)

2 − (1
4b2)

2(1
2b4)

2 + 4(1
2b4)

3
)

= 1
43

(
−1

4b
3
2b6 + 9b2b4b6 − 27b26 + 1

4b
2
2b

2
4 − 8b34

)
= ∆

26 .

Thus, the curve is smooth if, and only if, ∆ 6= 0.

Characteristic of F is = 2: Let E be given by

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

In characteristic 2 we have

b2 = a2
1, b4 = a1a3,

b6 = a2
3, b8 = a2

1a6 + a1a3a4 + a2a
2
3 + a2

4,

c4 = b22, ∆ = b22b8 + b26 + b2b4b6

and j = c34/∆.

Hence

∆ = a6
1a6 + a5

1a3a4 + a4
1a2a

2
3 + a4

1a
2
4 + a4

3 + a3
1a

3
3 and j =

a12
1

∆
.

We consider two sub-cases:

We have a1 = 0: Consider the linear map

ϕ : 〈x, y, z〉
F
→ 〈x, y, z〉

F
,





x 7→ x+ a2z,

y 7→ y,

z 7→ z.

This is clearly bijective, and we get

g := f ◦ ϕ = y2z + a3yz
2 − (x+ a2z)

3 − a2(x+ a2z)
2z

− a4(x+ a2z)z
2 − a6z

3

= y2z + a3yz
2 − x3 − a2x

2z − a2
2xz

2 − a3
2z

3

− a2x
2z − a3

2z
3 − a4xz

2 − a2a4z
3 − a6z

3

= y2z + a3yz
2 − x3 − (a2

2 + a4)xz
2 − (a2a4 + a6)z

3.
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Moreover, we have that ∆ = a4
3. Let Ê be the curve defined by g; again E is smooth

if, and only if, Ê is smooth. We have

∂g

∂x
= x2 + (a2

2a4)z
2,

∂g

∂y
= a3z

2

and
∂g

∂z
= y2 + (a2a4 + a6)z

2.

Therefore, Ê is smooth at ∞, since ∂g
∂z (0, 1, 0) = 1 and, if ∆ 6= 0, the curve Ê

is smooth at every other point since ∂g
∂y = a3z

2. On the contrary, assume ∆ =

0. Then the curve is smooth if, and only if, for every point (x : y : 1) ∈ Ê(F),
∂g
∂x(x, y, 1) = x2 + (a2

2a4) 6= 0. But in the algebraic closure of F we can clearly

find an x satisfying x2 = −a2
2a4, and then a y satisfying f(x, y, 1) = 0 with this x.

Therefore, the curve is not smooth in this case.

We have a1 6= 0: Consider the linear map

ϕ : 〈x, y, z〉
F
→ 〈x, y, z〉

F
,





x 7→ a2
1x+ a3

a1
z,

y 7→ a3
1y +

a2
1a4+a2

3

a3
1

z,

z 7→ z.

This is clearly bijective and we get

1

a6
1

f ◦ ϕ = (a3
1y + (a2

1a4 + a2
3)/a

3
1z)

2z

+ a1(a
2
1x+ a3/a1z)(a

3
1y + (a2

1a4 + a2
3)/a

3
1z)z

+ a3(a
3
1y + (a2

1a4 + a2
3)/a

3
1z)z

2 − (a2
1x+ a3/a1z)

3

− a2(a
2
1x+ a3/a1z)

2z − a4(a
2
1x+ a3/a1z)z

2 − a6z
3

= y2z + xyz − x3 − a3 + a1a2

a3
1

x2z

− a4
1a2a

2
3 + a5

1a3a4 + a3
1a

3
3 + a4

3 + a4
1a

2
4 + a6

1a6

a12
1

z3

= y2z + xyz − x3 − a3 + a1a2

a3
1

x2z − ∆

a12
1

z3

Define g := y2z+ xyz− x3 − ((a3 + a1a2)/a
3
1)x

2z− (∆/a12
1 )z3 ∈ F[x, y, z]. Again we

work with the curve Ê defined by g, which is smooth if, and only if, E is smooth.

We have

∂g

∂x
= yz + x2,

∂g

∂y
= xz

and
∂g

∂z
= y2 + xy − a3 + a1a2

a3
1

x2 − ∆

a12
1

z2.

The curve Ê is smooth at ∞ as ∂g
∂z (0, 1, 0) = 1. Moreover, the curve is smooth at

(x : y : 1) ∈ Ê(F) if, and only if, x 6= 0 or y + x2 6= 0. Thus, the only point where

the curve can be singular is (0 : 0 : 1). But g(0, 0, 1) = ∆/a12
1 and hence the curve

has a singular point if, and only if, ∆ = 0.

Hence, we have gained the following proposition:
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Proposition 4.2.3. Let F be any field, and let E be the curve defined by the

Weierstraß equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3,

where a1, a2, a3, a4, a6 ∈ F. Then the curve is smooth if, and only if, the discrimi-

nant ∆ is 6= 0.

Moreover, if the characteristic of F is not two, then by the bijective linear trans-

formation

〈x, y, z〉
F
→ 〈x, y, z〉

F
,





x 7→ x,

y 7→ 1
2(y − (a1x+ a3z)),

z 7→ z

the Weierstraß equation becomes

y2z = 4x3 + b2x
2z + 2b4xz

2 + b6z
3.

(For the values bi and ∆ see Definition 4.2.1.)

From now on let F be a field that is perfect. By Proposition 2.2.28 this includes

the case of algebraically closed fields. We will now prove that the elliptic curves

defined over F are exactly the smooth curves given by a Weierstraß equation and,

moreover, characterize their isomorphisms.

Proposition 4.2.4. [Sil86, p. 63, ch. III, Proposition 3.1]

(1) Let (E,∞) be an elliptic curve defined over F. Then there exist functions x, y ∈
F(E) such that they define a map E → P2

F
, P 7→ (x(P ) : y(P ) : 1), which is an

isomorphism of E with the curve defined by a Weierstraß equation, and that ∞
is mapped onto (0 : 1 : 0). Moreover, F(E) = F(x, y) and [F(E) : F(x)] = 2.

This Weierstraß equation is unique up to linear changes of coordinates by

x′ = u2x+ r, y′ = u3y + su2x+ t

for u, r, s, t ∈ F, u 6= 0.

(2) If E is a smooth curve defined by a Weierstraß equation over F, then it is an

elliptic curve defined over F, with ∞ = (0 : 1 : 0). (In fact, F can be any field

for this part, and does not have to be perfect.)

(3) Two elliptic curves defined over the algebraic closure F of F, defined by Weier-

straß equations, are isomorphic over F if, and only if, their j-invariants are the

same.

Proof.

(1) Since ∞ is an F-rational point, n[∞] is a divisor defined over F for any n ∈ N.

Therefore, Γ(E,L(n[∞])) has a basis of functions defined over F according to

Proposition 3.8.9. Since E has genus one, we get `(n[∞]) = n for every n ≥ 1

according to Riemann-Roch (Proposition 3.7.46 (d)).
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Now Γ(E,L(2[∞])) has a basis {1, x}, where x ∈ F(E), and Γ(E,L(3[∞])) has

a basis {1, x, y}, where y ∈ F(E). The function x must have at least one pole

and it can have at most a double pole at ∞. But if x had a single pole at ∞,

then x2 would also be in Γ(E,L(2[∞])): a contradiction. Therefore x has a

double pole at ∞. If y has a pole of order less than 3, then y ∈ Γ(E,L(2[∞])),

a contradiction.

Now one sees that 1, x, y and x2 form a basis of Γ(E,L(4[∞])), and 1, x, y, x2

and xy form a basis of Γ(E,L(5[∞])). Moreover, both the sets {1, x, y, x2, xy, x3}
and {1, x, y, x2, xy, y2} form a basis of Γ(E,L(6[∞])). Therefore, there ex-

ist a0, . . . , a6 ∈ F, not all zero, such that

a0y
2 + a1xy + a3y + a5x

3 + a2x
2 + a4x+ a6 = 0.

Now both a0 and a5 must be non-zero, since both the sets {1, x, y, x2, xy, y2}
and {1, x, y, x2, xy, x3} are linearly independent. By replacing y by a0a

2
6y and

x by a0a6x, and then dividing the resulting equation by a3
0a

4
6 6= 0, we obtain an

equation f ∈ F[x, y] in inhomogenous Weierstraß form.

Define ϕ : E → V
F
(f) by P 7→ (x(P ) : y(P ) : 1). According to Proposition 3.7.16

this defines a morphism. If P = ∞, then ϕ(P ) = (0 : 1 : 0), as y has a higher

pole order than x. Since the only point mapped to (0 : 1 : 0) is ∞ we see that ϕ

is not constant. Therefore, by Proposition 3.7.8, it is finite and surjective, and

V
F
(f) is smooth and, further, degϕ = [F(E) : F(x, y)] < ∞. We have to show

that degϕ = 1, as then ϕ is an isomorphism.

But now x has exactly one double pole at ∞. Consider the map ψ : E → P1
F

defined by P 7→ (x(P ) : 1). Then, according to Proposition 3.7.15 (a), we get

degψ = 2, i. e. [F(E) : F(x)] = 2. By the same argument we get [F(E) : F(y)] =

3. But since [F(E) : F(x, y)] divides both [F(E) : F(x)] and [F(E) : F(y)], the

former must be one. Therefore, we have F(E) = F(x, y).

Let x′, y′ be two other functions defined over F which satisfy that {1, x′} is a

basis of Γ(E,L(2[∞])) and {1, x′, y′} a basis of Γ(E,L(3[∞])). Then we can

write x′ = α0 + α1x and y′ = β0 + β1x + β2y with αi, βj ∈ F. But since both

x, y and x′, y′ satisfy a Weierstraß equation where the coefficients of x3 and y2

are one, it must be that β2
2 = α3

1. Defining u = β2/α1 and s = β1/u
2 gives the

form as in the statement.

(2) Let E be given by a smooth Weierstraß equation, and ∞ = (0 : 1 : 0). According

to Proposition 3.7.40, the genus of E is 1
2(3−2)(3−1) = 1 and, therefore, (E,∞)

is an elliptic curve.

Another proof to show that E has genus one is to use Proposition 4.2.29: it

says that 0 ∈ WDiv(E) is a canonical divisor and, therefore, the genus of E is
1
2 deg 0 + 1 = 1 according to Riemann-Roch (Proposition 3.7.46 (c)).

(3) That the j-invariant is invariant under isomorphisms as in (a) can be verified

by tedious calculations (see also [Sil86, p. 49, ch. III]). A proof for the converse

can be found in [Sil86, pp. 50ff, ch. III, Proposition 1.4 (b) and pp. 325ff, A,

Proposition 1.2 (b)].

141



Chapter 4. Elliptic Curves

Remark 4.2.5. If E is a generalized elliptic curve over S = SpecR, Katz and

Mazur have shown that E is up to isomorphism ProjR[x, y, z]/ 〈f〉, where f is a

Weierstraß equation. Since the proof makes use of some tools which we have not

introduced, we refer the interested reader to [KM85, pp. 67–69, Section 2.2].

By part (c) of the proposition, the following definition makes sense:

Definition 4.2.6. Let E be an elliptic curve over a perfect field F. Define the

j-invariant of E, denoted by j(E), to be the j-invariant of one (and thus of all)

Weierstraß equations belonging to E.

Finally in this subsection, we will show how the coordinates of the Weierstraß

equation change after applying the isomorphisms from part (a) of the proposition

and, moreover, we want to give special forms for different characteristics and j-

invariants.

Remark 4.2.7. According to Proposition 4.2.4 (1), two elliptic curves given by

Weierstraß equations over F are isomorphic over F if one curve can be obtained from

the other by a coordinate transform of the form

x′ = u2x+ rz, y′ = u3y + su2x+ tz, z′ = z

for u, r, s, t ∈ F, u 6= 0. Let

y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0

be the Weierstraß equation of an elliptic curve. By plugging in the transformation

and by dividing by u6 we get

0 =
(y′)2z + a1x

′y′z + a3y
′z2 − (x′)3 − a2(x

′)2z − a4x
′z2 − a6z

3

u6

= y2z +
2su5 + a1u

5

u6
xyz +

2u3t+ a1u
3r + a3u

3

u6
yz2 − x3

− 3u4r + a2u
4 − s2u4 − a1su

4

u6
x2z

− −2su2t− a1u
2t− a1su

2r − a3su
2 + 3u2r2 + 2a2u

2r + a4u
2

u6
xz2

− −t2 − a1tr − a3t+ r3 + a2r
2 + a4r + a6

u6
z3.

Therefore, we get the following coefficients for the new curve:

a′1 =
2s+ a1

u
,

a′3 =
2t+ a1r + a3

u3
,

a′2 =
3r + a2 − s2 − a1s

u2
,

a′4 =
−2st− a1t− a1sr − a3s+ 3r2 + 2a2r + a4

u4

and a′6 =
−t2 − a1tr − a3t+ r3 + a2r

2 + a4r + a6

u6
.

142



4.2.1. Weierstraß Equation

Corollary 4.2.8. Let F be a perfect field and E/F an elliptic curve defined over F.

(a) If the characteristic of F is neither 2 nor 3, then E is isomorphic to a curve

given by a Weierstraß equation

y2z = x3 + a4xz
2 + a6z

3,

and we have

∆ = −16(4a3
4 + 27a2

6) 6= 0 and j = 1728
4a3

4

4a3
4 + 27a2

6

.

Any F-isomorphism of two such Weierstraß equations has the form

x′ = u2x, y′ = u3y, z′ = z, where u ∈ F∗,

and the coefficients of the new Weierstraß equation are

a′4 =
a4

u4
and a′6 =

a6

u6
.

(b) If the characteristic of F is 2 and j(E) = 0, then E is isomorphic to a curve

given by a Weierstraß equation

y2z + a3yz
2 = x3 + a4xz

2 + a6z
3,

and we have

∆ = a4
3 6= 0 and j = 0.

Any F-isomorphism of two such Weierstraß equations has the form

x′ = u2x+ s2z, y′ = u3y + u2sx+ tz, z′ = z,

where u ∈ F∗ and s, t ∈ F, and the coefficients of the new Weierstraß equation

are

a′3 =
a3

u3
, a′4 =

a3s+ s4 + a4

u4
and a′6 =

t2 + a3t+ s6 + a4s
2 + a6

u6
.

(c) If the characteristic of F is 2 and j(E) 6= 0, then E is isomorphic to a curve

given by a Weierstraß equation

y2z + xyz = x3 + a2x
2z + a6z

3,

and we have

∆ = a6 6= 0 and j =
1

a6
.

Any F-isomorphism of two such Weierstraß equations has the form

x′ = x, y′ = y + sx+ a3sz, z′ = z, where s ∈ F,

and the coefficients of the new Weierstraß equation are

a′2 = a2 + s(s+ 1) and a′6 = a6.
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(d) If the characteristic of F is 3 and j(E) = 0, then E is isomorphic to a curve

given by a Weierstraß equation

y2z = x3 + a4xz
2 + a6z

3,

and we have

∆ = −a3
4 6= 0 and j = 0.

Any F-isomorphism of two such Weierstraß equations has the form

x′ = u2x+ rz, y′ = u3y, z′ = z, where u ∈ F∗ and r ∈ F,

and the coefficients of the new Weierstraß equation are

a′4 =
a4

u4
and a′6 =

r3 + a4r + a6

u6
.

(e) If the characteristic of F is 3 and j(E) 6= 0, then E is isomorphic to a curve

given by a Weierstraß equation

y2z = x3 + a2x
2z + a6z

3,

and we have

∆ = −a3
2a6 6= 0 and j = −a

3
2

a6
.

Any F-isomorphism of two such Weierstraß equations has the form

x′ = u2x, y′ = u3y, z′ = z, where u ∈ F∗,

and the coefficients of the new Weierstraß equation are

a′2 =
a2

u2
and a′6 =

a6

u6
.

Proof. See [Sil86, p. 324, A, Proposition 1.1], Proposition 4.2.4 and Remark 4.2.7,

and the discussion in Section 4.2.1.

4.2.2 (Geometric) Group Law

In Section 4.1.1 we saw that one can define a natural group law on the points of an

elliptic curve, and we have seen in Corollary 4.1.9 that, for elliptic curves over fields,

the group law of an elliptic curve E comes from Pic0(E). In the first part of this

subsection we will prove Corollary 4.1.9 for this case. Thus, let E denote an elliptic

curve in the following, which is defined over a field F.

Proposition 4.2.9. Let D be a Weil divisor on E of degree zero. Then there exists

a unique P ∈ E(F) such that D ∼ [P ] − [∞].

Proof. By Riemann-Roch (Proposition 3.7.46 (d)) we have dim Γ(E,L([P ])) = 1

for every P ∈ E(F) and, hence, Γ(E,L([P ])) = F, where F denotes the algebraic

closure of F. Therefore, if [P ] ∼ [Q] for some P,Q ∈ E(F), and f ∈ F(E)∗ such that

div(f) = [P ] − [Q], then f ∈ F∗
and, therefore, P = Q. Thus, if [Q] − [∞] ∼ D ∼

[P ] − [∞] it follows that P = Q.
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Now consider the divisor D + [∞], which has degree one. By Riemann-Roch

(Proposition 3.7.46 (d)),

dim Γ(E,L(D + [∞])) = 1.

Let f ∈ Γ(E,L(D + [∞])) \ {0}. Then div(f) ≥ −D − [∞], and since deg div(f) =

0 = deg(−D − [∞]) − 1, we see that div(f) − [P ] = −D − [∞] for some P ∈ E(F).

But this means D ∼ [P ] − [∞].

Corollary 4.2.10. Let E be an elliptic curve. Then the map

σ : E → Pic0(E), P 7→ [[P ] − [∞]]

is a bijection.

It is a well-known fact that this “abstractly” defined group law has a geometric

interpretation that leads to explicit formulae for adding two points. As at the

beginning, it is not clear how this geometric group law is connected to the abstract

group law from Theorem 4.1.6. As it is, in fact, a group law, we will at the beginning

treat it as another operation on E(F). This operation will be denoted by +̂ and is

defined as follows:

By the Theorem of Bézout (Theorem 3.2.33), every line meets the elliptic curve

in exactly three (not necessarily distinct) points. We define an operation ⊕ on E

such that P ⊕ Q is the third point on the line going through P and Q, where the

tangent to E is taken instead of the line if P = Q. (Note that for this case it

is important that E is smooth.) We further define another operation +̂ on E by

P +̂Q := (P ⊕Q) ⊕∞; this adds a so called reflection to ⊕. This operation is also

called the Chord and Tangent Law.

The following proposition now draws the connection between the geometric ad-

dition +̂ and the abstract addition +:

Proposition 4.2.11. If P,Q,R ∈ E(F) are three points, then P +̂Q = R if, and

only if, P +Q = R.

Proof. Assume that P +̂Q = R. It is enough to show that P + Q = R, since for

both operations + and +̂ there is exactly one R, which makes these statements true.

Let L1 be the line through P and Q, which meets E in P ⊕Q, and let L2 be the

line through P ⊕Q and ∞, which meets E in R. Let fi ∈ F[x, y, z]1 be the defining

equation of Li, i = 1, 2. According to Proposition 3.7.33 we have

0 ∼ div

(
f1

f2

)
= ([P ] + [Q] + [P ⊕Q]) − ([P ⊕Q] + [∞] + [R])

= [P ] + [Q] − [∞] − [R]

and, therefore, P +Q = R by Corollary 4.1.9.

The rest of this subsection is devoted to explicitly finding formulae for the group

law on E(F), and for computing the inverse of a point with respect to this group

law. For this let P1 = (x1 : y1 : z1) and P2 = (x2 : y2 : z2) be points on E, and

assume E is given by

f := y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3 ∈ F[x, y, z], (∗)
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where F is algebraically closed. We will later see that if F is any field over which

the curve is defined, then E(F) is a group.

Recall Corollary 2.2.43, which says that if
∑n

i=0 aix
i is a monic polynomial in

one indeterminate of degree n for which n−1 distinct roots α1, . . . , αn−1 are known.

Then

−an−1 −
n−1∑

i=1

αi

is the remaining root. Also recall Remark 2.2.44.

The Inverse of a Point Let P2 = −P1 and assume that P1 is finite. According

to the definition of the Chord and Tangent Law we get P2 by laying a vertical line

through P1. The line meets E in P1, ∞ and P2. Since P1 + ∞ = ∞ would imply

P1 = ∞, it must be that P2 is finite. Therefore x2 = x1, z2 = z1 = 1, and we just

need to find y2. Consider the equation f(x1, y, 1) = 0:

y2 + (a1x1 + a3)y = x3
1 + a2x

2
1 + a4x1 + a6.

We know that the equation has the solution y = y1 in F and, hence, according to

Corollary 2.2.43, the second solution is given by

y2 = − (a1x1 + a3 + y1) .

For an arbitrary point (x1 : y1 : z1) 6= ∞ on E, we thus have

−(x1 : y1 : z1) = − (x1/z1 : y1/z1 : 1)

= (x1/z1 : −a1x1/z1 − a3 − y1/z1 : 1)

= (x1 : −a1x1 − a3z1 − y1 : z1).

Note that if one plugs (x1 : y1 : z1) = (0 : 1 : 0) into this formula, one gets

(0 : −1 : 0) = (0 : 1 : 0). Therefore, this formula is valid for every point on the curve

and we have the following proposition:

Proposition 4.2.12. Let E be an elliptic curve over an algebraically closed field F
defined by the Weierstraß equation (∗), and let P = (x : y : z) ∈ E(F). Then

−P = (x : −a1x− a3z − y : z).

Moreover, if both E and P are defined over a subfield K of F, then −P is also defined

over K.

The Line Through Two Points Since ∞ is the identity, it is enough to consider

the case that both P1 and P2 are finite. Therefore, we can assume z1 = z2 = 1.

Assume x1 6= x2. Then the line through P1 and P2 has the slope

λ =
y1 − y2

x1 − x2
,

and the equation y = λx+v, where v = y1−λx1 = x1y2−x2y1
x1−x2

. Now, assume x1 = x2

and P1 6= −P2 and, thus, in particular y1 = y2. By Definition 3.7.35, the tangent at

E in P1 = P2 has the slope

λ = −
∂f
∂x (P1)
∂f
∂y (P1)

=
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
.
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Another way to write this is

λ =
x2

1 + x1x2 + x2
2 + a2(x1 + x2) + a4 − a1y2

y1 + y2 + a1x1 + a3
,

since P1 = P2. Moreover, if P1 6= P2, then

x2
1 + x1x2 + x2

2 + a2(x1 + x2) + a4 − a1y2

y1 + y2 + a1x1 + a3
=
y1 − y2

x1 − x2

when both sides are defined, as an elementary computation shows (since P1 and

P2 lie on E, they satisfy the Weierstraß equation; by subtracting these and can-

celling/adding terms one can reach this identity) (see [Sil86, pp. 69f, Remark 3.6.1]).

The Sum of Two Points Now assume that the line given by y = λx + v =

λx+(y1−λx1) = λ(x−x1)+y1 meets the elliptic curve in the points P1 = (x1 : y1 : 1)

and P2 = (x2 : y2 : 1). By the Theorem of Bézout we know that it meets the curve

at a third point P3 = (x3 : y3 : 1). When plugging the equation of the line into

f(x, y, 1) = 0, we get

0 = f(x, λ(x− x1) + y1, 1)

= λ2(x− x1)
2 + 2λ(x− x1)y1 + y2

1

+ (a1x+ a3)(λ(x− x1) + y1) − x3 − a2x
2 − a4x− a6

= − x3 +
(
λ2 + a1λ− a2

)
x2 + lower order terms.

Since we know that x1 and x2 are solutions for this equation, by Corollary 2.2.43

and Remark 2.2.44 we get

x3 = −
(
−λ2 − a1λ+ a2 + x1 + x2

)
= λ2 + a1λ− a2 − x1 − x2.

By using y = λ(x − x1) + y1 we can hence compute y∗3 = λ(x3 − x1) + y1. After

reflecting this, we get

y3 = −y∗3 − a1x3 − a3 = −(λ+ a1)x3 + λx1 − y1 − a3.

Therefore, we gained the following proposition, which describes the group law

explicitly for all pairs (P1, P2) of points P1, P2 ∈ E(F):

Proposition 4.2.13. Let E be an elliptic curve over an algebraically closed field F
defined by the Weierstraß equation (∗). Let Pi = (xi : yi : zi) ∈ E(F), i = 1, 2.

(a) Assume that both P1 6= ∞ 6= P2 and, therefore, z1 = z2 = 1. If then x1 6= x2,

then we have P1 + P2 = (x3 : y3 : 1), where

λ =
y1 − y2

x1 − x2
,

x3 = λ2 + a1λ− a2 − x1 − x2

and y3 = − (λ+ a1)x3 + λx1 − y1 − a3.

(b) Assume that both P1 6= ∞ 6= P2 and, therefore, z1 = z2 = 1. Moreover, assume

that P1 6= −P2. If then y1 + y2 + a1x1 + a3 6= 0 (which is always the case if

P1 = P2 6= −P1), then we have P1 + P2 = (x3 : y3 : 1), where

λ =
x2

1 + x1x2 + x2
2 + a2(x1 + x2) − a1y2 + a4

y1 + y2 + a1x1 + a3
,

x3 = λ2 + a1λ− a2 − x1 − x2

and y3 = − (λ+ a1)x3 + λx1 − y1 − a3.
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(c) If P1 = ∞, then P1 +P2 = P2; if P2 = ∞, then P1 +P2 = P1; and if P1 = −P2,

then P1 + P2 = ∞.

(d) The cases (a)–(c) cover all possible pairs of points (P1, P2).

If K is a subfield of F such that P1, P2 and E are defined over K, then also P1 +P2

is defined over K.

Corollary 4.2.14. Let E be an elliptic curve defined over any field F. Then the

F-rational points of E form a group, which is a subgroup of the F-rational points,

where F denotes the algebraic closure of F.

Actually this is also implied by Theorem 4.1.6 and Proposition 4.1.4, as E/ Spec F
is a generalized elliptic curve.

Corollary 4.2.15. Let P = (x : y : 1) ∈ E(F) and (x′ : y′ : z′) = Q := P + P ∈
E(F). Then

x′

z′
=

x4 + b4x
2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6
if the denominator on the right side is non-zero.

We close this subsection by showing that the group law is a morphism, which

can be seen as a part of the proof of Theorem 4.1.6 in the case of a generalized

elliptic curve over Spec F, since in this special case we cannot use Yoneda’s Lemma

via Proposition 3.9.6. Note that if one assumes Theorem 4.1.6 to be true, then the

following statement follows from Theorem 4.1.6 and Definition 3.9.1.

Proposition 4.2.16. [Sil86, p. 68, Theorem 3.6] Let E be an elliptic curve over an

algebraically closed field F. Then the functions of the group law, + : E×E → E and

− : E → E, are morphisms of varieties. Moreover, the translation-by-P map τP :

Q 7→ Q+ P is an isomorphism for every P ∈ E(F).

Moreover, one can get rational maps ψi : E × E → E, 1 ≤ i ≤ n, such that

(i) if ψi is defined for P,Q ∈ E(F), then ψi(P,Q) = P +Q; and

(ii) for every pair P,Q ∈ E(F) there is an i such that ψi(P,Q) is defined.

Proof. By Proposition 4.2.12 the map − : E → E is clearly a morphism. Consider

the τP map, P ∈ E(F)\{∞}. By Proposition 4.2.13, it can be given by a polynomial

that is valid for all but the three points P , −P and ∞. Therefore, τP is clearly a

dominant rational map. By Proposition 3.7.16 it is, therefore, a morphism. Clearly

τP ◦ τ−P = idE = τ−P ◦ τP and, therefore, τP is an isomorphism.

Now let P,Q ∈ E(F) be two points. Let ϕ : E × E → E be the map defined

by the formulae in Proposition 4.2.13(a). This is clearly a rational function that

is undefined for pairs of the form (R,R), (∞, R), (R,∞) and (R,−R), R ∈ E.

Consider ψP,Q : E × E → E, where

ψP,Q = τP ◦ τQ ◦ ϕ ◦ (τ−P × τ−Q).

Clearly ψP,Q is a rational map, and ψP,Q(R1, R2) = R1 + R2 if ψP,Q(R1, R2) is

defined. But ψP,Q is only undefined for pairs of points of the form (R + P,R +Q),

(P,R + Q) and (R + P,Q), R ∈ E(F). Therefore, by varying P and Q, one gets a

set of rational maps ψ1, . . . , ψn : E × E → E which satisfy (i) and (ii).
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4.2.3 Complete Systems of Addition Laws

Let E be an elliptic curve over an algebraically closed field F given by the Weierstraß

equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

with a1, a2, a3, a4, a6 ∈ F. In Proposition 4.2.13 we saw that the group law on elliptic

curves over fields can be described by explicit formulae. Unfortunately, this set of

formulae includes several special cases, or in more exact terms, some of the formulae

are only defined on Zariski closed sets. By Proposition 4.2.16, it is possible to find

a set of formulae that works on Zariski open subsets of E × E. Unfortunately, the

proposition gives no easy way to find a set of these formulae that not only works

for all pairs of points, but is also parameterized by a1 to a6 and hence can be used

for any elliptic curve. In this subsection we will see that it is possible to not only

find formulae that are better with respect to the named criteria above but also work

over every field and, as we will see later, also for curves over rings.

Definition 4.2.17. (Compare [LR85, LR87, BL95].)

(a) A triple ψ = (ψi)i=0,1,2 ∈ (F[x1, y1, z1, x2, y2, z2])
3 is called an addition law if

the following conditions hold:

(i) There exist positive integers di > 0, i = 1, 2, such that if seen as a poly-

nomial in xi, yi, zi, the ψj’s are homogenous of degree di, j = 0, 1, 2. We

then say that the ψj’s are bihomogenous of bidegree (d1, d2).

(ii) For every two points P1 = (x1 : y1 : z1), P2 = (x2 : y2 : z2) ∈ E(F),

for x3 = ψ1(P1, P2), y3 = ψ2(P2, P2), z3 = ψ3(P1, P2) we either have

x3 = y3 = z3 = 0 or (x3 : y3 : z3) = P1 + P2 ∈ E(F). In the second case

we say that ψ is defined for P1 and P2.

If ψ = (ψi)i is an addition law, let D(ψ) denote the open subset of E(F)×E(F)

for which ψ is defined.

(b) Two addition laws ψ = (ψi)i and ϕ = (ϕi)i are said to be equivalent if there

exists an λ ∈ F∗ such that ψi = λϕi for all i.

(c) A complete set of addition laws is a set A of addition laws ψ ∈ A, such that⋃{D(ψ) | ψ ∈ A} = E(F) × E(F).

The formulae from Proposition 4.2.13 (a) can easily be used to obtain a group

law that is defined on the Zariski open set

(E(F) × E(F)) \ {(∞, P ), (P,∞), (P, P ), (P,−P ) | P ∈ E(F)},

by homogenization and using the common denominator (x1z2 − x2z1)
3(z1z2)

3. But

one can do better by using the common denominator (x1z2 − x2z1)
3(z1z2), and

replacing x3
i by

y2
i zi + a1xiyizi + a3yiz

2
i − a2x

2
i zi − a4xiz

2
i − a6z

3
i .

This can be achieved for example by the following MuPADTM [MuP05] code:
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PRETTYPRINT := FALSE;

f := y^2*z + a_1*y*x*z + a_3*y*z^2 - a_2*x^2*z - a_4*x*z^2 - a_6*z^3

f1 := subs(f, {x=x_1,y=y_1,z=z_1});

f2 := subs(f, {x=x_2,y=y_2,z=z_2});

simp := g -> expand(subsex(expand(g), \

x_1^3=f1, x_1^4=x_1*f1, x_2^3=f2, x_2^4=x_2*f2))

lambda := simplify((y_1/z_1 - y_2/z_2) / (x_1/z_1 - x_2/z_2));

xx_3 := (lambda^2 + a_1*lambda - a_2 - x_1/z_1 - x_2/z_2);

yy_3 := (-(lambda + a_1)*(lambda^2 + a_1*lambda - a_2 - x_1/z_1 \

- x_2/z_2) + lambda*x_1/z_1 - y_1/z_1 - a_3);

z1_3 := simplify(lcm(denom(xx_3), denom(yy_3)))/(z_1*z_2)^2;

x1_3 := simplify(xx_3 * z1_3);

y1_3 := simplify(yy_3 * z1_3);

psi_0 := simp(simp(x1_3));

psi_1 := simp(simp(y1_3));

psi_2 := simp(simp(z1_3));

The resulting addition law is

ψ0 = 2x1y1y2z2 − 2x2y1y2z1 + 2a3x1y2z1z2 − 2a3x2y1z1z2

+ x1y
2
2z1 − x2y

2
1z2 − a1x

2
2y1z1 + a2x1x

2
2z1 + a1x

2
1y2z2

− a2x
2
1x2z2 + a3x1y1z

2
2 − a3x2y2z

2
1 − 3a6x1z1z

2
2 + 3a6x2z

2
1z2

− a4x
2
1z

2
2 + a4x

2
2z

2
1 ,

ψ1 = 2a1x2y1y2z1 − 2a1x1y1y2z2 + 2a2x1x2y1z2 − 2a2x1x2y2z1

− 2a4x1y2z1z2 + 2a4x2y1z1z2 − 2a1a3x1y2z1z2 + 2a1a3x2y1z1z2

+ 3x1x
2
2y1 − 3x2

1x2y2 + y1y
2
2z1 − y2

1y2z2 + a2x
2
2y1z1 + 3a3x1x

2
2z1

− a2x
2
1y2z2 − 3a3x

2
1x2z2 + a4x1y1z

2
2 − a4x2y2z

2
1 + 3a6y1z1z

2
2

− 3a6y2z
2
1z2 − a1a2x1x

2
2z1 + a1a2x

2
1x2z2 + 3a1a6x1z1z

2
2

− a3a4x1z1z
2
2 − 3a1a6x2z

2
1z2 + a3a4x2z

2
1z2 + a1a4x

2
1z

2
2

− a1a4x
2
2z

2
1 − a2a3x

2
1z

2
2 + a2a3x

2
2z

2
1 + a2

1x
2
2y1z1

− a2
1x

2
1y2z2 + a2

3y1z1z
2
2 − a2

3y2z
2
1z2

and

ψ2 = 3x2
1x2z2 − 3x1x

2
2z1 − a1x1y1z

2
2 + a1x2y2z

2
1 − a3y1z1z

2
2

+ a4x1z1z
2
2 + a3y2z

2
1z2 − a4x2z

2
1z2 − y2

1z
2
2 + y2

2z
2
1 + a2x

2
1z

2
2

− a2x
2
2z

2
1 .

Note that ψ0, ψ1 and ψ2 are actually polynomials in the ring

Z[a1, a2, a3, a4, a6][x1, y1, z1, x2, y2, z2].

In [BL95], Bosma and Lenstra show that this system works for every pair P1, P2 ∈
E(F)2 such that P1 6= P2. In fact, they show much more: they show that there exists

a complete set of addition laws with two addition laws and that these addition laws

are necessarily of bidegree (2, 2). Moreover, they characterize all such complete sets

of addition laws and give a way to effectively compute them.

Note that before [BL95], Lange and Ruppert first gave a complete system of

addition laws of bidegree (2, 2), consisting of three formulae for elliptic curves of the

form y2z = 4x3 − g2xz
2 − g3z

3 over fields of characteristic not equal to 2 or 3 in
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[LR85, Section 3], and then a complete system of addition laws of bidegree (2, 2)

consisting of three formulae which works for elliptic curves, defined by a Weierstraß

equation as in this thesis, and over arbitrary fields.

We now want to state the main results from [BL95] and show how a second

addition formula can be computed, such that this new one with the one above forms

a complete set of addition laws for every elliptic curve over every field.

Theorem 4.2.18 (W. Bosma, H. W. Lenstra). Let E be an elliptic curve

defined by a Weierstraß equation over any algebraically closed field F.

(a) [BL95, p. 230, Theorem 1] A complete system of addition laws consists of at

least two addition laws. If a complete system of addition laws has exactly two

addition laws, both must be of bidegree (2, 2).

(b) [BL95, p. 230, Theorem 2] There is a bijection between P2(F) and the set of

equivalence classes of addition laws with the following property:

If (a : b : c) ∈ P2(F) corresponds to the addition law ψ, then ψ is defined for

(P1, P2) ∈ E(F) × E(F) if, and only if, P1 − P2 does not lie on the line defined

by ax+ by + cz = 0 in P2(F).

Since there are pairs of lines in P2(F) that intersect outside E(F), complete systems

of addition laws with exactly two addition laws do exist. Two such lines are, for

example, y = 0 and z = 0.

According to [BL95, pp. 236f], the addition law given above corresponds to the

point (0 : 0 : 1) ∈ P2(F), i. e. it is undefined exactly for the pairs of points (P1, P2)

satisfying P1 = P2.

Finally, we want to specify a second addition law. To be more precise we will

present the one corresponding to (0 : 1 : 0), such that we get a complete system of

addition laws. According to [BL95, p. 236], for this we can define

ψ′
i := ψi(P1,−P2) = ψi(x1, y1, z1, x2,−y2 − a1x2 − a3z2, z2),

and choose ϕi := ψi · ψ
′
1

ψ′
2
. After simplifying the ϕi’s and reducing as much as possible,

one obtains (up to equivalence) the addition law corresponding to (0 : 1 : 0).

To see that the ϕi’s are polynomials one can proceed as follows. Note that f = gh

in R/ 〈g1, . . . , gk〉 means that one can write f = gh+
∑
gihi with h, hi ∈ R. In this

case we have R := Z[a1, a2, a3, a4, a6, x1, y1, z1, x2, y2, z2], and with the help of the

computer algebra system MAGMATM [CAG04] we can write ψiψ
′
1 = ψ′

2gi + f1g1,i +

f2g2,i in R for polynomials gi, g1,i, g2,i, where f1 = f(x1, y1, z1) and f2 = f(x2, y2, z2)

are Weierstraß equations. Then ϕi = gi. But first we need ϕi,numer := ψiψ
′
1,

i = 0, 1, 2 and ψ′
2, which can be computed, for example, in MuPADTM with the

following code:

phi_0numer := simplify(psi_0*subs(psi_1, y_2 = -y_2-a_1*x_2-a_3*z_2));

phi_1numer := simplify(psi_1*subs(psi_1, y_2 = -y_2-a_1*x_2-a_3*z_2));

phi_2numer := simplify(psi_2*subs(psi_1, y_2 = -y_2-a_1*x_2-a_3*z_2));

den := expand(subs(psi_2, y_2 = -y_2-a_1*x_2-a_3*z_2));

Before executing these lines one needs to execute the code listed above, which

computes the ψi’s.
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Then in MAGMATM one can proceed with the following code, where phi_0numer,

phi_1numer, phi_2numer (the ϕi,numer’s) and den (the denominator, i. e. ψ′
2) are re-

placed with the result from MuPADTM:

S<a_1,a_2,a_3,a_4,a_6,x_1,y_1,z_1,x_2,y_2,z_2> := PolynomialRing(IntegerRing(), 11);

f1 := a_1*x_1*y_1*z_1 - x_1^3 - a_6*z_1^3 + y_1^2*z_1 - a_2*x_1^2*z_1 \

+ a_3*y_1*z_1^2 - a_4*x_1*z_1^2;

f2 := a_1*x_2*y_2*z_2 - x_2^3 - a_6*z_2^3 + y_2^2*z_2 - a_2*x_2^2*z_2 \

+ a_3*y_2*z_2^2 - a_4*x_2*z_2^2;

J := IdealWithFixedBasis([den, f1, f2]);

phi_0 := Coordinates(J, phi_0numer)[1];

phi_1 := Coordinates(J, phi_1numer)[1];

phi_2 := Coordinates(J, phi_2numer)[1];

This gives the following results:

ϕ0 = a2
1a3a4x1z1z

2
2 − a3

1a6x1z1z
2
2 − a2

1a3a6z
2
1z

2
2 − a2

1a3x
2
1x2z2

− a2
1a6y1z1z

2
2 − a2

1a6z
2
1y2z2 + a2

1x1y1x
2
2 − a1a2a

2
3x1z1z

2
2

− 4a1a2a6x1z1z
2
2 − a1a2x

2
1x

2
2 + a1a

2
3a4z

2
1z

2
2 − a1a

2
3x

2
1z

2
2

− 2a1a
2
3x1z1x2z2 + a1a3a4y1z1z

2
2 + a1a3a4z

2
1y2z2 − a1a3x

2
1y2z2

+ a1a3y1z1x
2
2 + a1a

2
4x1z1z

2
2 − 2a1a4x

2
1x2z2 − a1a4x1z1x

2
2

− 3a1a6x
2
1z

2
2 − 6a1a6x1z1x2z2 + 2a1x1y1x2y2 + a1y

2
1x

2
2

− a2a
3
3z

2
1z

2
2 − a2a

2
3y1z1z

2
2 − a2a

2
3z

2
1y2z2 − 4a2a3a6z

2
1z

2
2

− a2a3x1z1x
2
2 − 4a2a6y1z1z

2
2 − 4a2a6z

2
1y2z2 − a2x

2
1x2y2

− a2x1y1x
2
2 − a3

3x1z1z
2
2 − a3

3z
2
1x2z2 − a2

3x1y1z
2
2

− 2a2
3x1z1y2z2 + a3a

2
4z

2
1z

2
2 − 2a3a4x1z1x2z2 − a3a4z

2
1x

2
2

− 3a3a6x1z1z
2
2 − 6a3a6z

2
1x2z2 + a3y

2
1x2z2 + 2a3y1z1x2y2

+ a2
4y1z1z

2
2 + a2

4z
2
1y2z2 − a4x

2
1y2z2 − 2a4x1y1x2z2

− 2a4x1z1x2y2 − a4y1z1x
2
2 − 3a6x1y1z

2
2 − 6a6x1z1y2z2

− 6a6y1z1x2z2 − 3a6z
2
1x2y2 + x1y1y

2
2 + y2

1x2y2,

ϕ1 = a4
1a6x1z1z

2
2 − a3

1a3a4x1z1z
2
2 + a3

1a3a6z
2
1z

2
2 + a3

1a6y1z1z
2
2 + a2

1a2a
2
3x1z1z

2
2

+ 5a2
1a2a6x1z1z

2
2 + a2

1a2a6z
2
1x2z2 − a2

1a
2
3a4z

2
1z

2
2 − a2

1a3a4y1z1z
2
2

− a2
1a

2
4x1z1z

2
2 + a2

1a4a6z
2
1z

2
2 + a2

1a4x
2
1x2z2 + 3a2

1a6x
2
1z

2
2

+ 6a2
1a6x1z1x2z2 + a1a2a

3
3z

2
1z

2
2 + a1a2a

2
3y1z1z

2
2 − a1a2a3a4x1z1z

2
2

− a1a2a3a4z
2
1x2z2 + 4a1a2a3a6z

2
1z

2
2 − 2a1a2a3x

2
1x2z2 + 4a1a2a6y1z1z

2
2

+ a1a2x1y1x
2
2 − a1a

3
3x1z1z

2
2 − 2a1a3a

2
4z

2
1z

2
2 − 2a1a3a4x

2
1z

2
2

− 4a1a3a4x1z1x2z2 − 3a1a3a6x1z1z
2
2 + 3a1a3a6z

2
1x2z2 − a1a

2
4y1z1z

2
2

+ 2a1a4x1y1x2z2 + a1a4y1z1x
2
2 + 3a1a6x1y1z

2
2 + 6a1a6y1z1x2z2

+ a1y
2
1x2y2 + a2

2a
2
3x1z1z

2
2 + a2

2a
2
3z

2
1x2z2 + 4a2

2a6x1z1z
2
2 + 4a2

2a6z
2
1x2z2

− a2
2x

2
1x

2
2 + a2a

2
3a4z

2
1z

2
2 + a2a

2
3x

2
1z

2
2 + 2a2a

2
3x1z1x2z2 − 2a2a3x1y1x2z2

− a2a3y1z1x
2
2 − a2a

2
4x1z1z

2
2 − a2a

2
4z

2
1x2z2 + 4a2a4a6z

2
1z

2
2 − a2a4x

2
1x2z2

− a2a4x1z1x
2
2 + 3a2a6x

2
1z

2
2 + 12a2a6x1z1x2z2 + 3a2a6z

2
1x

2
2 − a4

3z
2
1z

2
2

− a3
3y1z1z

2
2 − a2

3a4x1z1z
2
2 − 2a2

3a4z
2
1x2z2 − 6a2

3a6z
2
1z

2
2 + 3a2

3x
2
1x2z2

− a3a4x1y1z
2
2 − 2a3a4y1z1x2z2 − 3a3a6y1z1z

2
2 − 3a3x1y1x

2
2 + a3y

2
1y2z2
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− a3
4z

2
1z

2
2 − a2

4x
2
1z

2
2 − 4a2

4x1z1x2z2 − a2
4z

2
1x

2
2 − 3a4a6x1z1z

2
2

− 3a4a6z
2
1x2z2 + 3a4x

2
1x

2
2 − 9a2

6z
2
1z

2
2 + 9a6x

2
1x2z2 + 9a6x1z1x

2
2 + y2

1y
2
2

and

ϕ2 = a3
1x

2
1x2z2 + a2

1a3x
2
1z

2
2 + 2a2

1a3x1z1x2z2 + a2
1x

2
1y2z2 + 2a2

1x1y1x2z2

+ 2a1a2x
2
1x2z2 + a1a2x1z1x

2
2 + 2a1a

2
3x1z1z

2
2 + a1a

2
3z

2
1x2z2 + 2a1a3x1y1z

2
2

+ 2a1a3x1z1y2z2 + 2a1a3y1z1x2z2 + a1a4x
2
1z

2
2 + 2a1a4x1z1x2z2

+ 3a1a6x1z1z
2
2 + 3a1x

2
1x

2
2 + 2a1x1y1y2z2 + a1y

2
1x2z2 + 2a2a3x1z1x2z2

+ a2a3z
2
1x

2
2 + a2x

2
1y2z2 + 2a2x1y1x2z2 + 2a2x1z1x2y2 + a2y1z1x

2
2

+ a3
3z

2
1z

2
2 + 2a2

3y1z1z
2
2 + a2

3z
2
1y2z2 + a3a4x1z1z

2
2 + 2a3a4z

2
1x2z2

+ 3a3a6z
2
1z

2
2 + 3a3x1z1x

2
2 + a3y

2
1z

2
2 + 2a3y1z1y2z2 + a4x1y1z

2
2

+ 2a4x1z1y2z2 + 2a4y1z1x2z2 + a4z
2
1x2y2 + 3a6y1z1z

2
2 + 3a6z

2
1y2z2

+ 3x2
1x2y2 + 3x1y1x

2
2 + y2

1y2z2 + y1z1y
2
2.

Note that these formulae work for every elliptic curve E given by a Weierstraß

equation over every field F, since for developing these formulae we did not use any

information on F or E except the coefficients of the Weierstraß equation, and the

resulting polynomials are elements of Z[a1, a2, a3, a4, a6, x1, y1, z1, x2, y2, z2].

Finally in this section we present a few properties about the complete system of

addition laws presented here. These properties can later be used to define a group

law for points of elliptic curves over rings R with PicR = 0.

Proposition 4.2.19. Consider the ring

R :=
Z[a1, a2, a3, a4, a6][x1, y1, z1, x2, y2, z2, x3, y3, z3]

〈f(x1, y1, z1), f(x2, y2, z2), f(x3, y3, z3)〉
,

where

f = y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3

∈ Z[a1, a2, a3, a4, a6][x, y, z]

Define Pi := (xi, yi, zi), −Pi := (xi,−yi − xia1 − z1a3) and ∞ := (0, 1, 0). In this

ring the following identities hold concerning the above polynomials ψ0, ψ1, ψ2, ϕ0,

ϕ1 and ϕ2, seen as polynomials in the indeterminates (x1, y1, z1), (x2, y2, z2):

(a) We have ϕiψj = ϕjψi for all 0 ≤ i, j ≤ 2.

(b) We have f(ϕ0, ϕ1, ϕ2) = 0 = f(ψ0, ψ1, ψ2).

(c) We have

ψi(P1, P2) = −ψi(P2, P1)

and

ϕi(P1, P2)ϕj(P2, P1) = ϕj(P1, P2)ϕi(P2, P1)

for 0 ≤ i, j ≤ 2.

(d) We have

ψi(P1,−P1) = 0 and ϕi(P1,−P1) = 0

for i = 0 and i = 2.
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(e) We have

ϕ0(P1,∞) = x1y1, ϕ1(P1,∞) = y2
1, ϕ2(P1,∞) = y1z1,

ψ0(P1,∞) = x1z1, ψ1(P1,∞) = y1z1, ψ2(P1,∞) = z2
1 .

(f) We introduce the notation ψ := (ψ0, ψ1, ψ2) and ϕ := (ϕ0, ϕ1, ϕ2). We then

have

ψi(ψ(P1, P2), P3)ψj(ψ(P1, P2), P3) = ψj(ψ(P1, P2), P3)ψi(ψ(P1, P2), P3),

ψi(ϕ(P1, P2), P3)ψj(ψ(P1, P2), P3) = ψj(ϕ(P1, P2), P3)ψi(ψ(P1, P2), P3),

ϕi(ψ(P1, P2), P3)ψj(ψ(P1, P2), P3) = ϕj(ψ(P1, P2), P3)ψi(ψ(P1, P2), P3),

ϕi(ϕ(P1, P2), P3)ψj(ψ(P1, P2), P3) = ϕj(ϕ(P1, P2), P3)ψi(ψ(P1, P2), P3),

ψi(ψ(P1, P2), P3)ψj(ϕ(P1, P2), P3) = ψj(ψ(P1, P2), P3)ψi(ϕ(P1, P2), P3),

ψi(ϕ(P1, P2), P3)ψj(ϕ(P1, P2), P3) = ψj(ϕ(P1, P2), P3)ψi(ϕ(P1, P2), P3),

ϕi(ψ(P1, P2), P3)ψj(ϕ(P1, P2), P3) = ϕj(ψ(P1, P2), P3)ψi(ϕ(P1, P2), P3),

ϕi(ϕ(P1, P2), P3)ψj(ϕ(P1, P2), P3) = ϕj(ϕ(P1, P2), P3)ψi(ϕ(P1, P2), P3),

ψi(ψ(P1, P2), P3)ϕj(ψ(P1, P2), P3) = ψj(ψ(P1, P2), P3)ϕi(ψ(P1, P2), P3),

ψi(ϕ(P1, P2), P3)ϕj(ψ(P1, P2), P3) = ψj(ϕ(P1, P2), P3)ϕi(ψ(P1, P2), P3),

ϕi(ψ(P1, P2), P3)ϕj(ψ(P1, P2), P3) = ϕj(ψ(P1, P2), P3)ϕi(ψ(P1, P2), P3),

ϕi(ϕ(P1, P2), P3)ϕj(ψ(P1, P2), P3) = ϕj(ϕ(P1, P2), P3)ϕi(ψ(P1, P2), P3),

ψi(ψ(P1, P2), P3)ϕj(ϕ(P1, P2), P3) = ψj(ψ(P1, P2), P3)ϕi(ϕ(P1, P2), P3),

ψi(ϕ(P1, P2), P3)ϕj(ϕ(P1, P2), P3) = ψj(ϕ(P1, P2), P3)ϕi(ϕ(P1, P2), P3),

ϕi(ψ(P1, P2), P3)ϕj(ϕ(P1, P2), P3) = ϕj(ψ(P1, P2), P3)ϕi(ϕ(P1, P2), P3),

ϕi(ϕ(P1, P2), P3)ϕj(ϕ(P1, P2), P3) = ϕj(ϕ(P1, P2), P3)ϕi(ϕ(P1, P2), P3)

for all 0 ≤ i, j ≤ 2.

Proof. We will check the claims with MAGMATM since the polynomials that appear
in the calculations are too huge. We need the following definitions:

S<a_1,a_2,a_3,a_4,a_6,x_1,y_1,z_1,x_2,y_2,z_2,x_3,y_3,z_3> := \

PolynomialRing(IntegerRing(), 14);

f1 := a_1*x_1*y_1*z_1 - x_1^3 - a_6*z_1^3 + y_1^2*z_1 - a_2*x_1^2*z_1 \

+ a_3*y_1*z_1^2 - a_4*x_1*z_1^2;

f2 := a_1*x_2*y_2*z_2 - x_2^3 - a_6*z_2^3 + y_2^2*z_2 - a_2*x_2^2*z_2 \

+ a_3*y_2*z_2^2 - a_4*x_2*z_2^2;

f3 := a_1*x_3*y_3*z_3 - x_3^3 - a_6*z_3^3 + y_3^2*z_3 - a_2*x_3^2*z_3 \

+ a_3*y_3*z_3^2 - a_4*x_3*z_3^2;

I := ideal<S | f1, f2, f3>;

After that, one should define psi_i and phi_i, 0 ≤ i ≤ 2, as above.

(a) The claim directly translates into the following expressions:

NormalForm(phi_0 * psi_1 - phi_1 * psi_0, I);

NormalForm(phi_0 * psi_2 - phi_2 * psi_0, I);

NormalForm(phi_1 * psi_2 - phi_2 * psi_1, I);

All three expressions evaluate to 0.
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(b) The claim directly translates into the following expressions:

NormalForm(psi_1^2*psi_2 + a_1*psi_0*psi_1*psi_2 + a_3*psi_1*psi_2^2 - psi_0^3 \

- a_2*psi_0^2*psi_2 - a_4*psi_0*psi_2^2 - a_6*psi_2^3, I);

NormalForm(phi_1^2*phi_2 + a_1*phi_0*phi_1*phi_2 + a_3*phi_1*phi_2^2 - phi_0^3 \

- a_2*phi_0^2*phi_2 - a_4*phi_0*phi_2^2 - a_6*phi_2^3, I);

All two expressions evaluate to 0.

(c) We need the following intermediate results:

t0 := Evaluate(psi_0, [ a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_1, y_1, z_1, x_3, y_3, z_3 ]);

t1 := Evaluate(phi_1, [ a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_1, y_1, z_1, x_3, y_3, z_3 ]);

t2 := Evaluate(phi_2, [ a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_1, y_1, z_1, x_3, y_3, z_3 ]);

Then we can proceed as follows:

NormalForm(Evaluate(psi_0, [ a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_1, y_1, z_1, x_3, y_3, z_3 ]) + psi_0, I);

NormalForm(Evaluate(psi_1, [ a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_1, y_1, z_1, x_3, y_3, z_3 ]) + psi_1, I);

NormalForm(Evaluate(psi_2, [ a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_1, y_1, z_1, x_3, y_3, z_3 ]) + psi_2, I);

NormalForm(t0 * phi_1 - t1 * phi_0, I);

NormalForm(t0 * phi_2 - t2 * phi_0, I);

NormalForm(t1 * phi_2 - t2 * phi_1, I);

All expressions evaluate to 0.

(d) The claim directly translates into the following expressions:

NormalForm(Evaluate(psi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

x_1, -y_1-a_1*x_1-a_3*z_1, z_1, x_3, y_3, z_3]), I);

NormalForm(Evaluate(psi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

x_1, -y_1-a_1*x_1-a_3*z_1, z_1, x_3, y_3, z_3]), I);

NormalForm(Evaluate(psi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

x_1, -y_1-a_1*x_1-a_3*z_1, z_1, x_3, y_3, z_3]), I);

NormalForm(Evaluate(phi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

x_1, -y_1-a_1*x_1-a_3*z_1, z_1, x_3, y_3, z_3]), I);

NormalForm(Evaluate(phi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

x_1, -y_1-a_1*x_1-a_3*z_1, z_1, x_3, y_3, z_3]), I);

NormalForm(Evaluate(phi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

x_1, -y_1-a_1*x_1-a_3*z_1, z_1, x_3, y_3, z_3]), I);

The first, third, fourth and sixth expressions evaluate to 0, and the second and

fifth do not evaluate to 0. This is as expected.

(e) The claim directly translates into the following expressions:

NormalForm(Evaluate(psi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

0, 1, 0, x_3, y_3, z_3]), I);

NormalForm(Evaluate(psi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

0, 1, 0, x_3, y_3, z_3]), I);

NormalForm(Evaluate(psi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

0, 1, 0, x_3, y_3, z_3]), I);

NormalForm(Evaluate(phi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

0, 1, 0, x_3, y_3, z_3]), I);

NormalForm(Evaluate(phi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

0, 1, 0, x_3, y_3, z_3]), I);

NormalForm(Evaluate(phi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

0, 1, 0, x_3, y_3, z_3]), I);
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The expressions evaluate to x1z1, y1z1, z
2
1 , x1y1, y

2
1 and y1z1.

(f) We need the following intermediate results:

psi_0a := Evaluate(psi_0, [a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_3, y_3, z_3, x_3, y_3, z_3]);

psi_1a := Evaluate(psi_1, [a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_3, y_3, z_3, x_3, y_3, z_3]);

psi_2a := Evaluate(psi_2, [a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_3, y_3, z_3, x_3, y_3, z_3]);

phi_0a := Evaluate(phi_0, [a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_3, y_3, z_3, x_3, y_3, z_3]);

phi_1a := Evaluate(phi_1, [a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_3, y_3, z_3, x_3, y_3, z_3]);

phi_2a := Evaluate(phi_2, [a_1, a_2, a_3, a_4, a_6, x_2, y_2, z_2, \

x_3, y_3, z_3, x_3, y_3, z_3]);

// Notation: psiphiA(P_1, P_2, P_3) := psi(P_1, phi(P_2, P_3))

psipsiA_0 := Evaluate(psi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0a, psi_1a, psi_2a, x_3, y_3, z_3]);

psipsiA_1 := Evaluate(psi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0a, psi_1a, psi_2a, x_3, y_3, z_3]);

psipsiA_2 := Evaluate(psi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0a, psi_1a, psi_2a, x_3, y_3, z_3]);

phipsiA_0 := Evaluate(phi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0a, psi_1a, psi_2a, x_3, y_3, z_3]);

phipsiA_1 := Evaluate(phi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0a, psi_1a, psi_2a, x_3, y_3, z_3]);

phipsiA_2 := Evaluate(phi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0a, psi_1a, psi_2a, x_3, y_3, z_3]);

psiphiA_0 := Evaluate(psi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0a, phi_1a, phi_2a, x_3, y_3, z_3]);

psiphiA_1 := Evaluate(psi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0a, phi_1a, phi_2a, x_3, y_3, z_3]);

psiphiA_2 := Evaluate(psi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0a, phi_1a, phi_2a, x_3, y_3, z_3]);

phiphiA_0 := Evaluate(phi_0, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0a, phi_1a, phi_2a, x_3, y_3, z_3]);

phiphiA_1 := Evaluate(phi_1, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0a, phi_1a, phi_2a, x_3, y_3, z_3]);

phiphiA_2 := Evaluate(phi_2, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0a, phi_1a, phi_2a, x_3, y_3, z_3]);

// Notation: psiphiB(P_1, P_2, P_3) := phi(psi(P_1, P_2), P_3)

psipsiB_0 := Evaluate(psi_0a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0, psi_1, psi_2, x_3, y_3, z_3]);

psipsiB_1 := Evaluate(psi_1a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0, psi_1, psi_2, x_3, y_3, z_3]);

psipsiB_2 := Evaluate(psi_2a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0, psi_1, psi_2, x_3, y_3, z_3]);

phipsiB_0 := Evaluate(psi_0a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0, phi_1, phi_2, x_3, y_3, z_3]);

phipsiB_1 := Evaluate(psi_1a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0, phi_1, phi_2, x_3, y_3, z_3]);

phipsiB_2 := Evaluate(psi_2a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0, phi_1, phi_2, x_3, y_3, z_3]);

psiphiB_0 := Evaluate(phi_0a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0, psi_1, psi_2, x_3, y_3, z_3]);

psiphiB_1 := Evaluate(phi_1a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0, psi_1, psi_2, x_3, y_3, z_3]);

psiphiB_2 := Evaluate(phi_2a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

psi_0, psi_1, psi_2, x_3, y_3, z_3]);

phiphiB_0 := Evaluate(phi_0a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0, phi_1, phi_2, x_3, y_3, z_3]);

phiphiB_1 := Evaluate(phi_1a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0, phi_1, phi_2, x_3, y_3, z_3]);
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phiphiB_2 := Evaluate(phi_2a, [a_1, a_2, a_3, a_4, a_6, x_1, y_1, z_1, \

phi_0, phi_1, phi_2, x_3, y_3, z_3]);

Then we can proceed as follows:

NormalForm(psipsiA_0*psipsiB_1 - psipsiA_1*psipsiB_0, I);

NormalForm(psipsiA_0*psipsiB_2 - psipsiA_2*psipsiB_0, I);

NormalForm(psipsiA_1*psipsiB_2 - psipsiA_2*psipsiB_1, I);

NormalForm(psipsiA_0*phipsiB_1 - psipsiA_1*phipsiB_0, I);

NormalForm(psipsiA_0*phipsiB_2 - psipsiA_2*phipsiB_0, I);

NormalForm(psipsiA_1*phipsiB_2 - psipsiA_2*phipsiB_1, I);

NormalForm(psipsiA_0*psiphiB_1 - psipsiA_1*psiphiB_0, I);

NormalForm(psipsiA_0*psiphiB_2 - psipsiA_2*psiphiB_0, I);

NormalForm(psipsiA_1*psiphiB_2 - psipsiA_2*psiphiB_1, I);

NormalForm(psipsiA_0*phiphiB_1 - psipsiA_1*phiphiB_0, I);

NormalForm(psipsiA_0*phiphiB_2 - psipsiA_2*phiphiB_0, I);

NormalForm(psipsiA_1*phiphiB_2 - psipsiA_2*phiphiB_1, I);

NormalForm(phipsiA_0*psipsiB_1 - phipsiA_1*psipsiB_0, I);

NormalForm(phipsiA_0*psipsiB_2 - phipsiA_2*psipsiB_0, I);

NormalForm(phipsiA_1*psipsiB_2 - phipsiA_2*psipsiB_1, I);

NormalForm(phipsiA_0*phipsiB_1 - phipsiA_1*phipsiB_0, I);

NormalForm(phipsiA_0*phipsiB_2 - phipsiA_2*phipsiB_0, I);

NormalForm(phipsiA_1*phipsiB_2 - phipsiA_2*phipsiB_1, I);

NormalForm(phipsiA_0*psiphiB_1 - phipsiA_1*psiphiB_0, I);

NormalForm(phipsiA_0*psiphiB_2 - phipsiA_2*psiphiB_0, I);

NormalForm(phipsiA_1*psiphiB_2 - phipsiA_2*psiphiB_1, I);

NormalForm(phipsiA_0*phiphiB_1 - phipsiA_1*phiphiB_0, I);

NormalForm(phipsiA_0*phiphiB_2 - phipsiA_2*phiphiB_0, I);

NormalForm(phipsiA_1*phiphiB_2 - phipsiA_2*phiphiB_1, I);

NormalForm(psiphiA_0*psipsiB_1 - psiphiA_1*psipsiB_0, I);

NormalForm(psiphiA_0*psipsiB_2 - psiphiA_2*psipsiB_0, I);

NormalForm(psiphiA_1*psipsiB_2 - psiphiA_2*psipsiB_1, I);

NormalForm(psiphiA_0*phipsiB_1 - psiphiA_1*phipsiB_0, I);

NormalForm(psiphiA_0*phipsiB_2 - psiphiA_2*phipsiB_0, I);

NormalForm(psiphiA_1*phipsiB_2 - psiphiA_2*phipsiB_1, I);

NormalForm(psiphiA_0*psiphiB_1 - psiphiA_1*psiphiB_0, I);

NormalForm(psiphiA_0*psiphiB_2 - psiphiA_2*psiphiB_0, I);

NormalForm(psiphiA_1*psiphiB_2 - psiphiA_2*psiphiB_1, I);

NormalForm(psiphiA_0*phiphiB_1 - psiphiA_1*phiphiB_0, I);

NormalForm(psiphiA_0*phiphiB_2 - psiphiA_2*phiphiB_0, I);

NormalForm(psiphiA_1*phiphiB_2 - psiphiA_2*phiphiB_1, I);

NormalForm(phiphiA_0*psipsiB_1 - phiphiA_1*psipsiB_0, I);

NormalForm(phiphiA_0*psipsiB_2 - phiphiA_2*psipsiB_0, I);

NormalForm(phiphiA_1*psipsiB_2 - phiphiA_2*psipsiB_1, I);

NormalForm(phiphiA_0*phipsiB_1 - phiphiA_1*phipsiB_0, I);

NormalForm(phiphiA_0*phipsiB_2 - phiphiA_2*phipsiB_0, I);

NormalForm(phiphiA_1*phipsiB_2 - phiphiA_2*phipsiB_1, I);

NormalForm(phiphiA_0*psiphiB_1 - phiphiA_1*psiphiB_0, I);

NormalForm(phiphiA_0*psiphiB_2 - phiphiA_2*psiphiB_0, I);

NormalForm(phiphiA_1*psiphiB_2 - phiphiA_2*psiphiB_1, I);

NormalForm(phiphiA_0*phiphiB_1 - phiphiA_1*phiphiB_0, I);

NormalForm(phiphiA_0*phiphiB_2 - phiphiA_2*phiphiB_0, I);

NormalForm(phiphiA_1*phiphiB_2 - phiphiA_2*phiphiB_1, I);

All expressions evaluate to 0.

Note that checking (a)–(e) is very fast, but checking (f) involves a great deal of time.
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The simplest case, namely checking

ψi(ψ(P1, P2), P3)ψj(ψ(P1, P2), P3) = ψj(ψ(P1, P2), P3)ψi(ψ(P1, P2), P3),

0 ≤ i < j ≤ 2, takes 220 minutes on one CPU of a 32 CPU SunFire 6800 machine

with 144 GB RAM, where 16 CPUs have 900 MHz and 16 CPUs have 1050 MHz.

The most complex equation,

ϕi(ϕ(P1, P2), P3)ϕj(ϕ(P1, P2), P3) = ϕj(ϕ(P1, P2), P3)ϕi(ϕ(P1, P2), P3),

0 ≤ i < j ≤ 2, takes 1051.4 hours on the same machine, and during the computations

up to 1.5 GB of RAM were used by MAGMATM. The second most complex equation

took 840.6 hours to evaluate to 0.

4.2.4 Isogenies

In this subsection we will study morphisms between elliptic curves that preserve the

neutral element ∞. It turns out that these morphisms respect the group law.

Definition 4.2.20. Let (Ei,∞i), i = 1, 2 be elliptic curves. A morphism f : E1 →
E2 is called an isogeny if f(∞1) = ∞2. Denote the set of all isogenies f : E1 → E2

as Hom(E1, E2) and define End(E1) := Hom(E1, E1) to be the endomorphism ring

of E1.

Remarks 4.2.21.

(a) By Proposition 3.7.8, an isogeny is either finite and surjective, or constant. We

denote the constant isogeny by 0 and call it the zero isogeny.

For a more general statement, also see [KM85, p. 76, Theorem 2.4.2].

(b) Recall that the degree of a non-constant isogeny, defined in Definition 3.7.9, is

the degree of the field extension F(E1)/F(E2). We define the degree of the zero

isogeny to be 0.

The group law on elliptic curves induces a structure of Abelian groups on the

set of isogenies between two elliptic curves:

Proposition 4.2.22. If ϕ,ψ : E1 → E2 are isogenies of elliptic curves, then

(ϕ + ψ)(P ) := ϕ(P ) + ψ(P ) defines an isogeny ϕ + ψ : E1 → E2. Moreover,

(−ϕ)(P ) := −ϕ(P ) also defines an isogeny −ϕ : E1 → E2.

Proof. Note that ϕ + ψ is the same as the composition of the morphisms (ϕ,ψ) :

E1 → E2 × E2 and + : E2 × E2 → E2. For −ϕ compose ϕ with the inversion

− : E2 → E2.

Corollary 4.2.23. If E1 and E2 are elliptic curves, then Hom(E1, E2) has the

structure of an Abelian group.

It turns out that isogenies respect the group law:

Proposition 4.2.24. [Sil86, p. 75, Theorem 4.8] Let ϕ : E1 → E2 be an isogeny of

elliptic curves. Then ϕ(P +Q) = ϕ(P ) + ϕ(Q) for all P,Q ∈ E(F).
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See also [KM85, p. 77, Theorem 2.5.1].

Proof. Assume ϕ 6= 0. Then ϕ induces a group morphism ϕ∗ : Pic0(E1) → Pic0(E2)

by Proposition 3.7.32, and clearly the diagram

E1
P 7→[[P ]−[∞1]] //

ϕ

��

Pic0(E1)

ϕ∗
��

E2
Q7→[[Q]−[∞1]]

// Pic0(E2)

commutes. Now the maps Ei → Pic0(Ei) are isomorphisms and group morphisms,

and therefore ϕ is a group morphism.

An important corollary from this proposition is that the endomorphism ring of

an elliptic curve is indeed a not necessarily commutative ring with unit id. We will

investigate this ring structure in Section 4.2.8.

Recall that for any P ∈ E(F) the translation-by-P map τP : E → E, defined by

Q 7→ Q+ P , is an isomorphism.

Proposition 4.2.25. [Sil86, p. 76, Corollary 4.9 and Theorem 4.10] Let ϕ : E1 →
E2 be a non-zero isogeny.

(a) The kernel kerϕ = ϕ−1(∞2) is a finite subgroup.

(b) For every Q ∈ E2 we have
∣∣ϕ−1(Q)

∣∣ = degs ϕ.

(c) For every P ∈ E1 we have eP (ϕ) = degi ϕ.

(d) The map

kerϕ→ G
F(E1)/F(E2), T 7→ τ∗T

is an isomorphism. Here τ ∗T : F(E2) → F(E2) is the induced automorphism of

the function field.

(e) If ϕ is separable, then ϕ is unramified, |kerϕ| = degϕ, and F(E1) is a Galois

extension of F(E2).

Of special interest are the endomorphisms of elliptic curves defined in the fol-

lowing definition.

Definition 4.2.26. Let m ∈ Z be an integer and E an elliptic curve. Define the

isogeny [m] ∈ End(E) for m > 0 by

[m] : E → E, P 7→ P + · · · + P︸ ︷︷ ︸
m times

,

for m < 0 by [m](P ) := −([−m](P )) and [0] := 0.

Proof. By Proposition 4.2.16 this is well-defined.

Remark 4.2.27. Let E1 and E2 be elliptic curves. Then Z acts on Hom(E1, E2)

by mϕ = [m] ◦ ϕ.
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4.2.5 Invariant Differentials

In this subsection we will present some results on the invariant differential asso-

ciated with a Weierstraß equation. These results are in particular important for

Section 4.2.7, where we will determine the group structure. Proofs and more infor-

mation can be found, for example, in [Sil86, ch. III, Section 5].

Definition 4.2.28. Let

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

2

be a Weierstraß equation over F. Then a invariant differential of this Weierstraß

equation is

ω =
dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
,

or any multiple by an element of F∗.

Proposition 4.2.29. [Sil86, p. 52, Proposition 1.5] Let E be a smooth curve given

by a Weierstraß equation. Then the invariant differential ω is holomorphic and

non-vanishing.

The same can be shown for generalized elliptic curves. Let τP again be the

translation-by-P map Q 7→ Q+P . The following proposition explains the name of an

invariant differential. Note that these two results can also be shown for generalized

elliptic curves (see [KM85, p. 68, Remark 2.2.2]).

Proposition 4.2.30. [Sil86, p. 80, Proposition 5.1] If ω is a translation invariant

differential of an elliptic curve E, then for every P ∈ E(F), we have τ ∗Pω = ω.

An invariant differential also respects the group structure of Hom(E1, E2):

Proposition 4.2.31. [Sil86, p. 81, Theorem 5.2] Let E1 and E2 be elliptic curves,

ω an invariant differential on E1, and let ϕ,ψ : E1 → E2 be isogenies. Then

(ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω.

Using this proposition one can state the following important results for the

[n] maps, n ∈ Z:

Corollary 4.2.32. Let E be an elliptic curve and ω an invariant differential on E.

(a) [Sil86, p. 83, Corollary 5.3] If m ∈ Z is an integer, then [m]∗ω = mω.

(b) [Sil86, p. 83, Corollary 5.4] Assume m ∈ Z is non-zero. If the characteristic

of F is p > 0, then further assume m is coprime to p. Then [m] is a finite,

separable endomorphism.

(c) [Sil86, p. 83, Corollary 5.5] Assume E is defined over Fq, q = pe for a prime p.

Let ϕ be the q-th power Frobenius endomorphism, and let m,n ∈ Z. Then

m+ nϕ : E → E

is separable if, and only if, p does not divides m.
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4.2.6 Dual Isogenies

In this subsection we will define the dual isogeny of an isogeny. This again will

be needed for the next subsection, where we will analyze the group structure of an

elliptic curve.

Theorem 4.2.33. [Sil86, p. 84, Theorem 6.1] Let ϕ : E1 → E2 be a non-constant

isogeny of degree m.

(a) There exists a unique isogeny ϕ̂ : E2 → E1 such that ϕ̂ ◦ ϕ = [m].

(b) As a group homomorphism ϕ̂ is equal to the composition

E2
Q7→[Q]−[∞] // WDiv0(E2)

ϕ∗
// WDiv0(E1)

P

nP [P ]7→P

nPP // E1.

See [KM85, p. 81, Theorem 2.6.1 and p. 82, Corollary 2.6.1.1] for a generalization.

Definition 4.2.34. Let ϕ : E1 → E2 be an isogeny of elliptic curves. The dual

isogeny ϕ̂ is the isogeny given by Theorem 4.2.33 (a) if ϕ 6= 0, and 0 otherwise.

Proposition 4.2.35. [Sil86, p. 86, Theorem 6.2] Let ϕ : E1 → E2 be an isogeny

between elliptic curves E1 and E2.

(a) It is

ϕ̂ ◦ ϕ = [degϕ] : E1 → E1 and ϕ ◦ ϕ̂ = [degϕ] : E2 → E2.

(b) If ψ : E2 → E3 is another isogeny, where E3 is another elliptic curve, then

ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.

(c) If ψ : E1 → E2 is another isogeny, then ϕ̂+ ψ = ϕ̂+ ψ̂.

(d) It is [̂m] = [m] and deg[m] = m2 for all m ∈ Z.

(e) We have ˆ̂ϕ = ϕ and deg ϕ̂ = degϕ.

See also [KM85, p. 82, Corollary 2.6.1.1, Theorem 2.6.2 and Corollary 2.6.2.1].

Remarks 4.2.36.

(a) Taking the dual isogeny induces a contravariant functor from and to the category

of elliptic curves over F with isogenies as morphisms.

(b) The construction of the dual isogeny gives a group morphism Hom(E1, E2) →
Hom(E2, E1) by (c), and by (e) it is an isomorphism.

The degree map on Hom(E1, E2) turns out to have a useful property which we

will exploit in the proof of Hasse’s Theorem.

Definition 4.2.37. [Sil86, p. 88] A quadratic form on an Abelian group G is a

map ϕ : G→ R satisfying

(a) ϕ(x) = ϕ(−x) for all x ∈ G; and
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(b) the induced pairing G×G→ R, (x, y) 7→ d(x+ y) − d(x) − d(y) is bilinear.

It is, moreover, positive definite if d(x) ≥ 0 for all x ∈ G, and if d(x) = 0 implies x =

0.

Corollary 4.2.38. [Sil86, p. 88, Corollary 6.3] If E1 and E2 are elliptic curves, then

the degree map deg : Hom(E1, E2) → Z, ϕ 7→ degϕ is a positive definite quadratic

form.

4.2.7 Group Structure and Order

By Theorem 4.1.6 we know that the points of an elliptic curve form a group. Next

one can ask what the structure of the group is. Two cases are of special interest:

firstly, if one fixes a natural number n, one can ask which points are annihilated

by n, i. e. are in the kernel of [n]. Secondly, one can ask what the group structure

is over a finite field or ring; in this case the group is finite. In this section we will

completely answer the first question. The second question will be answered for the

case of curves over finite fields Fq.

Definition 4.2.39. Let E be an elliptic curve.

(a) Define the torsion subgroup of E as

Tors(E) = {P ∈ E(F) | ordP <∞}.

(b) For an n ∈ N>0 define the subgroup of n-torsion points as

E[n] = ker[n] = {P ∈ E(F) | nP = ∞} ⊆ Tors(E).

Proposition 4.2.40. Let E be an elliptic curve over an algebraically closed field F
and n ∈ Z \ {0}.

(a) If n is invertible in F (which is always the case when the characteristic of F is

zero), then E[n] ∼= Z|n| × Z|n|.

(b) If the characteristic of F is p > 0, then either E[pn] = 0 for all n ≥ 1, or

E[pn] ∼= Zpn for all n ≥ 1.

(c) If E is defined over a finite field Fq, then there exists an m > 0 such that

E[n] ⊆ E(Fqm).

See also [KM85, p. 73ff, Theorem 2.3.1 and Corollary 2.3.2]. (Note that in the

proof in [KM85] the authors reduce to the case of an elliptic curve over C, and in this

case the problem is trivial since the group of points is non-canonically isomorphic

to C/Λ for a lattice Λ.)
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Proof. Note that by Proposition 4.2.35 (d) we have deg[n] = n2.

(a) Assume |n| > 1. By Corollary 4.2.32 (b) we know that [n] is separable and

finite. Therefore, |E[n]| = |ker[n]| = deg[n] = n2. If d is a divisor of n, then

clearly also |E[d]| = d2. Now by the Structure Theorem for Finitely Generated

Abelian Groups, Theorem 2.0.1,

E[n] ∼=
k∏

i=1

Zmk
, 1 < m1 divides · · · divides mk divides |E[n]| .

If n is prime, clearly k = 2 and m1 = m2 = n since every element of E[n]

has an order at most n. If n is composite, let d be a prime dividing m1. As

Zd × Zd ∼= E[d] ⊆ E[n], it must be that k = 2 (see Corollary 2.0.2). But since

every element of E[n] has order at most n, it must be that m1 = m2 = n.

(b) Let ϕ : E → E(p) be the F-linear p-th power Frobenius. By Proposition 4.2.25 (b)

|E[pn]| = degs[p
n], which by Corollary 3.7.11 and Proposition 4.2.35 equals

degs[p]
n = (degs[p])

n = (degs(ϕ̂ ◦ ϕ))n. Now ϕ is purely inseparable by Propo-

sition 3.7.19 (a) and, according to Proposition 3.7.11, we have degs(ϕ̂ ◦ ϕ) =

degs ϕ̂. By Proposition 4.2.35 (e) we have deg ϕ̂ = degϕ.

If ϕ̂ is separable, then degs ϕ̂ = degϕ = p by Proposition 3.7.19. If ϕ̂ is insepa-

rable, then degs ϕ̂ must be 1, since p is prime. (Note that this does not depend

on n!)

Hence, either E[pn] = 0 for all n ≥ 1, or |E[pn]| = pn and, therefore, E[pn] ∼= Zpn

by induction on n and by the Structure Theorem for Finitely Generated Abelian

Groups (Theorem 2.0.1).

(c) This follows directly from the fact that E[n] is always a finite subgroup.

The proposition allows us to deduce the group structure of an elliptic curve over

a finite field:

Corollary 4.2.41. Let E be an elliptic curve over Fq. Then E(Fq) ∼= Zn × Zm,

where n divides m, and 1 ≤ n ≤ m.

Proof. By the Structure Theorem for Finitely Generated Abelian Groups (Theo-

rem 2.0.1)

E(Fq) ∼=
n∏

i=1

Zmi ,

where 1 < mi ≤ · · · ≤ mn ≤ |E(Fq)| and mi divides mi+1, 1 ≤ i < n. If n > 2,

let d be a prime factor of m1. Then E(Fq) has a subgroup of type Znd (see Corol-

lary 2.0.2), which contradicts that E[d] has an order of at most d2 by Proposi-

tion 4.2.40. Thus n ≤ 2.

According to [Eng99, p. 107, Theorem 3.76] one can also show using the Weil

pairing that the integer n in Corollary 4.2.41 divides
∣∣F∗
q

∣∣ = q − 1.

Next we want to prove the Theorem of Hasse, which gives an estimate for the

size of the group of an elliptic curve over a finite field. Later we will see that this

bound is optimal. But before we proceed to the theorem, we need an intermediate

result on quadratic forms.
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Lemma 4.2.42 (Cauchy-Schwarz). [Sil86, pp. 131f, Lemma 1.2] Let G be an

Abelian group, and ϕ : G → R be a positive definite quadratic form. Then for

all x, y ∈ G we have

|ϕ(x− y) − ϕ(x) − ϕ(y)| ≤ 2
√
ϕ(x)ϕ(y).

Theorem 4.2.43 (Hasse). [Sil86, p. 131, Theorem 1.1] If E is an elliptic curve

over Fq, then |E(Fq)| = q + 1 − t, where |t| ≤ 2
√
q. (Here t is the trace of the

Frobenius endomorphism; see Definition 4.2.60.)

See also [KM85, p. 84f, Theorem 2.6.3 and Corollary 2.6.4].

Proof. Let ϕ : E → E be the q-th power Frobenius. Since Fq/Fq is Galois by

Proposition 2.2.38 and Proposition 2.2.28 (d), we get ker(1 − ϕ) = E(Fq), together

with Proposition 2.2.39. By Corollary 4.2.32 (c), 1 − ϕ is separable and, there-

fore, |ker(1 − ϕ)| = deg(1 − ϕ). By Proposition 3.7.19 (b) it is degϕ = q, and by

Corollary 4.2.38 and Lemma 4.2.42 we get

||E(Fq)| − 1 − q| = |deg(1 − ϕ) − deg 1 − degϕ|
≤ 2
√

deg 1 · degϕ = 2
√
q.

For the rest of this subsection we will present results from papers of H. W. Lenstra

and R. Schoof about which group sizes can appear for elliptic curves over Fq, and

how many non-isomorphic curves do exist which have a given group size. These

results are based on results by M. Deuring and W. C. Waterhouse. From now on let

Fq be a finite field of order q = pn, where p is a prime and n ∈ N>0.

Definition 4.2.44. In this definition all isomorphisms are taken as isomorphisms

defined over Fq.

(a) Denote with Eq the set of isomorphism classes of elliptic curves defined over Fq.
Define Nq := |Eq| and

N∗
q :=

∑

[E]∈Eq

1∣∣AutFq E
∣∣ .

(b) Denote with Eq(t) the set of isomorphism classes of elliptic curves defined over

Fq that have exactly q+1− t Fq-rational points. Define N(t) := Nq(t) := |Eq(t)|
and

N∗
q (t) :=

∑

[E]∈Eq(t)

1∣∣AutFq E
∣∣ .

Remarks 4.2.45.

(a) We clearly have Nq =
∑∞

t=−∞Nq(t) and Eq =
⋃∞
t=−∞ Eq(t).

(b) From Hasse’s Theorem 4.2.43 we know that Nq(t) = 0 if |t| > 2
√
q.

(c) By Proposition 4.2.4 (1) two elliptic curves given by Weierstraß equations over F
are isomorphic over F if one curve can be obtained from the other by a coordinate

transform of the form

x′ = u2x+ rz, y′ = u3y + su2x+ tz, z′ = z

for u, r, s, t ∈ F, u 6= 0.
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The first theorem gives which numbers can appear for group sizes.

Theorem 4.2.46. [Wat69, p. 536, Theorem 4.1] [Sch87, pp. 194f, Theorem 4.6]

Assume |t| ≤ 2
√
q. Then Nq(t) 6= 0 if, and only if, one of the following cases occurs:

(a) p does not divides t;

(b) q is not a square (i. e. if n is odd), and we have

(i) t = 0;

(ii) t = ±√
2q and p = 2;

(iii) t = ±√
3q and p = 3; or

(c) q is a square (i. e. if n is even), we have

(i) t2 = 4q;

(ii) t2 = q;

(iii) t = 0.

In all other cases, Nq(t) = 0.

Examples 4.2.47.

(a) For F = Z2, possible group sizes (by Hasse) are 1, . . . , 5. By the previous

theorem there are elliptic curves over F with 2 and 4 F-rational points by (a),

with 3 F-rational points by (b) (i), and with 1 and 5 F-points by (b) (ii).

(b) For F = Z3, possible group sizes (by Hasse) are 1, . . . , 7. By the previous theorem

there are elliptic curves over F with 2, 3, 5 and 6 F-rational points by (a), with

4 F-rational points by (b) (i), and with 1 and 7 F-rational points by (b) (iii).

(c) For F = F4, possible group sizes (by Hasse) are 1, . . . , 9. By the previous theorem

there are elliptic curves over F with 2, 4, 6 and 8 F-rational points by (a), with

5 F-rational points by (c) (iii), with 3 and 7 F-rational points by (c) (ii), and

with 1 and 9 F-rational points by (c) (i).

(d) For F = Z5, possible group sizes (by Hasse) are 2, . . . , 10. By the previous

theorem there are elliptic curves over F with 2, 3, 4, 5, 7, 8, 9 and 10 F-rational

points by (a) and with 6 F-rational points by (b) (i).

Hence if |F| ≤ 5, all sizes of groups of elliptic curves over F that are possible by

Hasse’s Theorem occur. The same happens for F = Z7. But in the case where

F = F8, there is no elliptic curve over F having 7 or 11 F-rational-points, even

though by Hasse such cardinalities are possible.

Definition 4.2.48. Let E be an elliptic curve over a finite field Fq with character-

istic p > 0. If p divides t = q + 1 − |E(Fq)|, then E is called supersingular.

We next want to state a theorem which states the exact number of non-isomorphic

elliptic curves over Fq with a given group size. For that we first need two definitions:
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Definition 4.2.49. Let p be an odd prime and n ∈ Z. Define the Jacobi symbol

(
n

p

)
:=





0 if n ≡ 0 (mod p),

1 if n is a non-zero square (mod p),

−1 if n is not a square (mod p),

and for p = 2 define the Jacobi symbol

(n
2

)
:=





0 if n ≡ 0 (mod 2),

1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).

Definition 4.2.50. Let ∆ ∈ Z, ∆ < 0 with ∆ ≡ 0 (mod 4) or ∆ ≡ 1 (mod 4).

(a) Define the conductor of ∆ to be

f := max{d ∈ Z | ∆/d2 ≡ 0 (mod 4) or ∆/d2 ≡ 1 (mod 4)},

and the fundamental discriminant associated to ∆ to be ∆/f 2.

(b) A positive definite binary quadratic form of discriminant ∆ is a polynomial

ax2 + bxy + cy2 ∈ Z[x, y],

where a, b, c ∈ Z satisfy a > 0 and b2 − 4ac = ∆. Denote the set of all such

forms by B(∆).

(c) Let f = ax2 + bxy + cy2 ∈ B(∆) and σ = ( p qr s ) ∈ SL2(Z). Then

fσ := a(px+ qy)2 + b(px+ qy)(rx+ sy) + c(rx+ sy)2

defines an action of SL2(Z) on B(∆). Here SL2(Z) is the special linear group,

i. e. the group of 2 × 2-matrices with entries in Z and determinant 1.

(d) Define CL(∆) := B(∆)/SL2(Z) and denote H(∆) := |CL(∆)| as the Kronecker

class number for ∆.

(e) Denote with

H∗(∆) :=
∑

[f ]∈CL(∆)

1

|Aut f |

the weighted Kronecker class number for ∆. Here Aut f denotes the set of

σ ∈ SL2(Z) such that fσ = f .

Remarks 4.2.51.

(a) Recall that SL2(Z) = {σ ∈ GL2(Z) | det(σ) = 1}.

(b) [Sch87, p. 187] It can be shown that CL(∆) is finite for every valid choice of ∆.

(c) By [Len87, pp. 654f] we have 2 ≤ |Aut f | ≤ 6 for all f ∈ B(∆). Therefore

H(∆)

6
≤ H∗(∆) ≤ H(∆)

2
≤ 3H∗(∆).
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We can now state the theorem:

Theorem 4.2.52. [Sch87, pp. 194f, Theorem 4.6] The value Nq(t) is given by the

following if |t| ≤ 2
√
q:

(a) if p does not divides t, we have Nq(t) = H(t2 − 4q);

(b) if q is not a square (i. e. if n is odd), we have

(i) Nq(t) = H(−4p) if t = 0;

(ii) Nq(t) = 1 if t2 = 2q and p = 2;

(iii) Nq(t) = 1 if t2 = 3q and p = 3;

(c) if q is a square (i. e. if n is even), we have

(i) Nq(t) = 1
12

(
p+ 6 − 4

(
−3
p

)
− 3

(
−4
p

))
if t2 = 4q;

(ii) 1 −
(
−3
p

)
if t2 = q;

(iii) 1 −
(
−4
p

)
if t = 0.

In all other cases, Nq(t) = 0.

Remark 4.2.53. According to [Len87, p. 654, (1.5)] at least for the case that if

p > 3 is prime and |t| ≤ 2
√
p, then N∗

p (t) = H∗(t2 − 4p) and N∗
p = p.

Note that it is actually possible to describe the group structure more exact

than we did in Corollary 4.2.41. R. Schoof described the possible group structures

for supersingular curves in [Sch87] and J. F. Voloch described the possible group

structures for non-supersingular curves in [Vol88].

Finally, we give a lower boundary for H(∆), which will be useful later during

the runtime analysis of Lenstra’s Elliptic Curve Factorization Method.

Proposition 4.2.54. [Len87, p. 656, Proposition 1.8] There exist effectively com-

putable positive constants c, c′ such that for every z ∈ Z>1 there exists an ∆∗(z) < −4

such that
c
√
−∆

log z
≤ H∗(∆) ≤ c′

√
−∆ · log |∆| · (log log |∆|)2

for all ∆ ∈ Z<0 with −z ≤ ∆, ∆ ≡ 0 (mod 4) or ∆ ≡ 1 (mod 4), and the funda-

mental discriminant ∆0 6= ∆∗(z). If ∆ satisfies all conditions except ∆0 6= ∆∗(z),

the inequality on the left might be invalid, but the one on the right side is still valid.

Remark 4.2.55. [Len87, p. 656, before Proposition 1.8] If the generalized Riemann

hypothesis is assumed to be true, then c
√
−∆

log z on the left can be replaced by c
√
−∆

log log z ,

and the inequality on the left is true for any ∆ satisfying all conditions except

∆ 6= ∆∗(z).

4.2.8 Some More Facts About End(E) and [m]

Before we will present algorithms that compute the group order of an elliptic curve

over Fq in the next subsection, we need some more facts about the endomorphism

ring and about division polynomials, which are in close connection to the [n] maps,

n ∈ Z.
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The Endomorphism Ring

Proposition 4.2.56. [Sil86, p. 71, Proposition 4.2] Let E, E1 and E2 be elliptic

curves.

(a) If m ∈ Z is not zero, then the map [m] is non-constant.

(b) The Z-module Hom(E1, E2) is torsion-free.

(c) The endomorphism ring End(E) is a zero-divisor-free, not necessarily commu-

tative ring with unit of characteristic zero.

Proof.

(a) This follows directly from Proposition 4.2.40 (a) and (b), since ker[m] = E[m] =

E[−m].

(b) Assume that [m]◦ϕ = mϕ = 0 form ∈ Z, ϕ ∈ Hom(E1, E2). By Corollary 3.7.11

we get 0 = deg([m]◦ϕ) = deg[m]·degϕ and, thus, either deg[m] = 0 or degϕ = 0.

If ϕ 6= 0 then degϕ 6= 0, but then by (a) we get m = 0.

(c) Let ϕ,ψ ∈ End(E) such that ϕ ◦ψ = 0. By the same degree argument as in (b)

we get either ϕ = 0 or ψ = 0. Hence, End(E) has no zero-divisors. Moreover

by (b) End(E) has characteristic zero.

The units in the endomorphism ring of E are exactly the automorphisms of E.

The following proposition shows that for most elliptic curves the only units are ±1.

Proposition 4.2.57. [Sil86, p. 103, Theorem 10.1] Let E be an elliptic curve

defined over a perfect field F. Then we have

(a) |Aut(E)| = 2 if j(E) 6∈ {0, 1728};

(b) |Aut(E)| = 4 if j(E) = 1728 and 6 ∈ F∗;

(c) |Aut(E)| = 6 if j(E) = 0 and 6 ∈ F∗;

(d) |Aut(E)| = 12 if j(E) = 0 = 1728 and 3 = 0 ∈ F;

(e) |Aut(E)| = 24 if j(E) = 0 = 1728 and 2 = 0 ∈ F.

These automorphisms are automorphisms over the algebraic closure of F.

What is more important is that we now have an upper boundary for the number

of automorphisms of an elliptic curve. We can, therefore, relate the quantities Nq(t)

and N∗
q (t) from Definition 4.2.44:

Remark 4.2.58. We have that

Nq(t)

24
≤ N∗

q (t) ≤
Nq(t)

2
≤ 12N∗

q (t).

If one fixes a natural number n, which is invertible in F, then one can see that

every endomorphism ϕ ∈ End(E) restricted to E[n] ∼= Z2
n is a group morphism.

Since Z2
n can be seen as a Zn-module, by the Theorem of Cayley-Hamilton, the

Zn-module endomorphism ϕ|E[n] satisfies an equation x2 + ax+ b, where a, b ∈ Zn.
Clearly a and b can be seen as elements of Z instead, but they still can depend on

n. The following proposition shows that they can be chosen independent of n:
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Proposition 4.2.59. [KM85, p. 84, Corollary 2.6.2.2 and Theorem 2.6.3] Let E

be an elliptic curve and ϕ ∈ End(E). Then ϕ satisfies the equation x2 − tx+ d = 0,

where t = ϕ+ ϕ̂ ∈ Z and d = degϕ = ϕϕ̂.

Again, this theorem holds in a more general manner (see [KM85]).

Proof. Using Proposition 4.2.35, we see that

deg(1 + ϕ) = ̂(1 + ϕ)(1 + ϕ) = (1 + ϕ̂)(1 + ϕ) = 1 + deg(ϕ) + (ϕ+ ϕ̂),

and, therefore, ϕ+ ϕ̂ ∈ Z. Moreover,

ϕ2 − (ϕ̂+ ϕ)ϕ+ ϕ̂ϕ = 0.

If one views ϕ|E[n] as an Zn-modulo endomorphism of the free Zn-module Z2
n,

one can represent it by a two-by-two matrix. The trace of this matrix is now the

value t in the equation x2 − tx+ d, which is annihilated by ϕ|E[n]. This leads to the

following definition:

Definition 4.2.60. Let E be an elliptic curve and ϕ ∈ End(E). Then trace(ϕ) :=

ϕ+ ϕ̂ ∈ Z is called the trace of ϕ.

This also explains why the integer t in |E(Fq)| = q + 1 − t is called the trace of

the Frobenius: it is simply trace(ϕ) for ϕ : E → E the q-th power Frobenius, since

as in the proofs of Theorem 4.2.43 and Theorem 4.2.59 we have

1 + q − trace(ϕ) = 1 + deg(−ϕ) + trace(−ϕ) = deg(1 − ϕ) = |E(Fq)| .

Division Polynomials Let E be an elliptic curve given by the Weierstraß equa-

tion

y2 = x3 + ax+ b, where a, b ∈ F.

Assume that the characteristic of F is neither 2 nor 3. The case of division polyno-

mials for all characteristics is handled for example in [Eng99, pp. 84ff].

Definition 4.2.61. [Sil86, p. 105, Exercise 3.7] The division polynomials on E are

the polynomials ψn ∈ Z[a, b, x, y] defined by

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2

and ψ2n =
ψn(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1)

2y
for n > 2.

The connection between the map [n] and ψn is given by the following proposition:
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Proposition 4.2.62. [Sil86, p. 105, Exercise 3.7] [Sch85, pp. 3f] [Eng99, pp. 84ff]

(a) For odd n we have that ψn is a polynomial in Z[a, b, x, y2]; for even n we have

that ψn/2y is a polynomial in Z[a, b, x, y2]. Define

fn :=





∂(ψn|y2=x3+ax+b)

∂x , n odd

1
y ·

∂(ψn|y2=x3+ax+b)

∂x , n even.

(b) As polynomials in x we can write ψ2
n = n2xn

2−1 + lower order terms. Moreover

assume that n is invertible in F. Then

deg fn =





1
2(n2 − 1) if n is odd,

1
2(n2 − 4) if n is even.

(c) A point P = (x : y : 1) ∈ E(F), 2P 6= ∞, satisfies nP = ∞ if, and only if,

fn(x) = 0.

(d) If nP 6= ∞ for P = (x : y : 1) ∈ E(F), let nP = (x′ : y′ : 1). Then

x′ = x− ψn−1(x, y)ψn+1(x, y)

ψ2
n(x, y)

and y′ =
ψn+2(x, y)ψ

2
n−1(x, y) − ψn−2(x, y)ψ

2
n+1(x, y)

4yψ3
n(x, y)

.

4.2.9 How to Count Points

In Section 4.2.7 we have seen several results about the group of points of an elliptic

curve. We know that it has the form Zn × Zm, where n divides m and n might be

1, and we know exactly which group orders are possible and which are not. What is

missing is an effective method to compute the order of the group for a given elliptic

curve. The first method is mostly of theoretical interest:

Let Fq be a finite field of characteristic p > 3, and E an elliptic curve defined

over Fq by

y2 = x3 + ax+ b, where a, b ∈ F.

Let

χ : Fq → N, x 7→





1 if (x3 + ax+ b)(q−1)/2 = 0,

0 if (x3 + ax+ b)(q−1)/2 = −1,

2 if (x3 + ax+ b)(q−1)/2 = 1.

Then for each x ∈ Fq the number χ(x) gives the number of y ∈ Fq such that

y2 = x3 + ax+ b. Then

|E(Fq)| = 1 +
∑

x∈Fq

χ(x).

This method is also described in [Len86, p. 109], and originally credited to S. Lang

and H. Trotter. It is only useful if q is small, since it has running time O(q1+ε) for

any constant ε > 0 and is therefore exponential.

One application of this to find a random point: choose a random x ∈ Fq such

that χ(x) > 0. Then use a square-root-finding algorithm to find a y ∈ Fq such that

y2 = x3 + ax + b. (On how to effectively compute square roots, see for example

[Sch85, pp. 490–494].)
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Generic Methods

Generic methods are methods which work for arbitrary groups, specialized to the

group of points of elliptic curves. This specialization is usually made by exploiting

the fact that inversions are fast, and that a boundary for the group size is given.

The best example for a generic method is probably the following variation of

the Shanks baby-step giant-step algorithm, due to Shanks and Mestre. It can be

used to compute both the order of a point P ∈ E(Fq) and the group order. Note

that the variation is that the boundaries for |E(Fq)| from Hasse’s Theorem are used.

Moreover, note that for this algorithm the characteristic can also be 2 and 3.

Let Fq be a finite field and E an elliptic curve defined over Fq. According to

[BSS99, p. 104, Section VI.3] and [Ros05], the algorithm works as follows:

(1) Repeat the following steps:

(a) Find a random point P ∈ E(Fq), define Q := (q+1)P and choose an m ∈ Z
such that m > 4

√
q.

(b) Compute all values jP for j = 0, . . . ,m, and store them. (This is the baby

step.)

(c) Compute Q + k(2mP ) for k = −m, . . . ,m, until Q + k(2mP ) = ±jP for

some 0 ≤ j ≤ m. (This is the giant step.)

(d) Compute M := q + 1 − 2mk ∓ j. This integer satisfies MP = ∞.

(e) Factor M =
∏`
i=1 p

ei
i , where the pi’s are distinct prime numbers and ei ∈

N>0.

(f) For every i ∈ {1, . . . , `} test whether M
pi
P = ∞. If it does, divide M by pi

and try this i again.

(g) Now M = ordP , which is a divisor of E(Fq).

(2) Continue repeating step (1) until the least common multiple of the M ’s com-

puted in (1) is in [q + 1 − 2
√
q, q + 1 + 2

√
q], and twice its value is greater than

q + 1 + 2
√
q.

The running time is O(q1/4+ε) for any constant ε > 0. Note that this algorithm

can also be used to compute information about the structure of E(Fq) (for more

information see [Ros05]).

Schoof’s Algorithm

The main reference for this paragraph is [Sch85, pp. 487–490], but a lot of informa-

tion on Schoof’s algorithm can be found also, for example, in [BSS99, Chapter VII]

or [Eng99, pp. 133–141, Section 5.2]. In his book [Eng99] A. Enge also covers the

cases of characteristic 2 and 3.

Let Fq be a finite field of characteristic p > 3. Let E be an elliptic curve defined

by

y2 = x3 + ax+ b, where a, b ∈ Fq.

Let t denote the trace of the q-th power Frobenius morphism ϕ ∈ End(E). We

know |E(Fq)| = q + 1 − t, and |t| ≤ 2
√
q by Theorem 4.2.43. If ` is prime, let ϕ`
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denote ϕ|E[`]. Now ϕ2
` − t′ϕ` + q ≡ 0 on E[`] if, and only if, t ≡ t′ (mod `). (For

more details, see [Sch85, p. 486].)

Note that by Proposition 4.2.62 (d), for any P = (x : y : 1) ∈ E[`], where

` ∈ [3, p− 1] is prime, we have that ϕ2
` + q = τϕ` for τ ∈ Z` if and only if

(
xq

2
, yq

2
)

+
(
x− ψq−1ψq+1

ψ2
q

,
ψq+2ψ2

q−1−ψq−2ψ2
q+1

4yψ3
q

)

is equal to ∞ if τ = 0 ∈ Z`, or is equal to

(
xq −

(
ψτ−1ψτ+1

ψ2
τ

)q
,
(
ψτ+2ψ2

τ−1−ψτ−2ψ2
τ+1

4yψ3
τ

)q)

otherwise.

We will just describe the algorithm without explaining why it works.

(a) For L ∈ N denote by PL all odd primes ≤ L excluding p. Compute an L such

that ∏

`∈PL

` > 4
√
q.

We will determine t mod ` for all ` ∈ PL, which allows us to compute t by the

restrictions known on t in step (d).

(b) Compute the polynomials f1, f2, . . . , fL.

(c) For every ` ∈ PL, compute t mod ` as follows:

(1) Test whether there is a point P = (x : y : 1) ∈ E[`] satisfying ϕ2
` (P ) = ±kP ,

where k = (q mod `) ∈ {1, . . . , `− 1}.
For this compute

gcd
(
(xq

2 − x)f2
k (x)(x

3 + ax+ b) + fk−1(x)fk+1(x), ψ`

)

if k is even, or

gcd
(
(xq

2 − x)f2
k (x) + fk−1(x)fk+1(x)(x

3 + ax+ b), ψ`

)

if k is odd. Now such a point exists if and only if the greatest common

divisor is not one.

(a) Case 1: for some P = (x : y : 1) ∈ E[`] we have ϕ2
` (P ) = ±qP .

Go step by step through these cases, until t (mod `) is determined:

(I) If the Jacobi symbol
( q
`

)
= −1 we have t ≡ 0 (mod `). Otherwise,

compute a square root w of q modulo `.

(II) If

(xq
2 − x)f2

w(x)(x3 + ax+ b) + fw−1(x)fw+1(x)

is coprime to f`(x) in case k is even, or if

(xq
2 − x)f2

w(x) + fw−1(x)fw+1(x)(x
3 + ax+ b)

is coprime to f`(x) in case k is odd, then t ≡ 0 (mod `). (In this

case, neither −w nor w is an eigenvalue of ϕ`.)
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(III) Define

Λ := −f2
w+2(x)fw−1(x) + f2

w−2(x)fw+1(x).

If

gcd
(
4(x3 + ax+ b)(q−1)/2f3

w(x) + Λ, f`(x)
)

= 1

if w is even, or

gcd
(
4(x3 + ax+ b)(q+3)/2f3

w(x) + Λ, f`(x)
)

= 1

if w is odd, then t ≡ −2w (mod `). (In this case −w is an eigen-

value.)

(IV) Otherwise t ≡ 2w (mod `). (In this case w is an eigenvalue.)

(b) Case 2: ψ2
` (P ) 6= ±qP for all P ∈ E[`].

We will test which of the relations ϕ2
`+q = τϕ` hold for τ ∈ {1, 2, . . . , `−

1}.
For this, one has to evaluate polynomials modulo f`(x) and test whether

they are zero modulo f`(x). The polynomials to test if they are zero

modulo f`(x) are
((
ψk−1ψk+1 − ψk(x

q2 + xq + x)
)
β2 + ψ2

kα
2
)
ψ2q
τ + ψqτ−1ψ

q
τ+1β

2ψ2
k

and

4yqψ3q
τ

(
α
(
(2xq

2
+ x)ψ2

k − ψk−1ψk+1

)

− yq
2
βψ2

k

)
− βψ2

k(ψτ+2ψ
2
τ−1 − ψτ−2ψ

2
τ+1)

q,

after first eliminating y2 using y2 = x3 + ax + b and dividing by y if

necessary. Here

α = ψk+2ψ
2
k−1 − ψk−1ψ

2
k+1 − 4yq

2+1ψ3
k

and

β =
(
(x− xq

2
)ψ2

k − ψk−1ψk+1

)
4yψk.

(d) Compute t from the t mod `, ` ∈ PL, using the Chinese Remainder Theorem

(see also Proposition 2.5.6) and Hasse’s Theorem, which asserts |t| ≤ 2
√
q.

Proposition 4.2.63. [Sch85, p. 490] This algorithm has deterministic running

time O(log9 q) and a memory consumption of O(log5 q).

4.3 Elliptic Curves over Rings

In this section we treat elliptic curves over rings. Clearly these are the generalized

elliptic curves over a base SpecR, where R is a ring. In Section 3.6 we saw that if

PicR is trivial, all points of P2
R and, hence, of an elliptic curve over R, are of the

form (x : y : z) ∈ P2(R). As this condition is satisfied by the rings that are of special

interest for applications, i. e. for Artinian rings, we focus only on such points even

if PicR 6= 0.

We begin this section by defining some notations for handling elliptic curves

over a ring R. Then we first look at the points of the curve in P2(R) and we will
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describe the functorial behavior of an elliptic curve. Then a “geometric” group law

is introduced on the points for the case that PicR = 0. Finally, we show that this

group law is the same as the one from Theorem 4.1.6. At the end we will give a

geometric interpretation of elliptic curves over Artinian rings.

Now we will begin with a notation for treating elliptic curves by their coefficients

of the defining Weierstraß equation.

Definition 4.3.1. Let R be any ring. A defining vector for an elliptic curve is an el-

ement a = (a1, a2, a3, a4, a6) ∈ R5 such that the discriminant ∆ = ∆(a1, a2, a3, a4, a6)

for the Weierstraß equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

is a unit in R. The curve defined by this Weierstraß equation in P2(R) is denoted

by Ea, and the discriminant by ∆a. To denote that Ea is a curve with a ∈ R5,

we will use the notation Ea/R. To denote the set of R-valued points of Ea, we

write Ea(R).

Moreover, we will identify Ea with the projective R-scheme ProjR[x, y, z]/ 〈fa〉,
where

fa := y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3,

if Pic(SpecR) = 0 (see Corollary 3.5.3).

Remark 4.3.2. Note that Ea(R) always contains ∞ = (0 : 1 : 0).

We next want to show that an elliptic curve Ea/R with a ∈ R5 is, as a scheme, a

generalized elliptic curve over SpecR. For this we begin by showing that fa is prime

modulo every maximal ideal of R. We need two lemmas for this, and the fact that

a polynomial over a field is prime if, and only if, it is irreducible if, and only if, the

ideal it generates is prime.

Lemma 4.3.3. Let F be a field, and f ∈ F[x0, . . . , xn] be a homogenous polynomial

of positive degree. Then the following are equivalent:

(i) The polynomial f is prime in F[x0, . . . , xn].

(ii) There exists an i such that xi does not divide f and that f |xi=1 is prime in

F[x0, . . . , xi−1, xi+1, . . . , xn].

Proof. If xi divides f and f is prime, then clearly f = λxi with λ ∈ F∗. In this case

chose another i. Assume that xi does not divide f . If then xjig ∈ 〈f〉 for j ∈ N and

g ∈ F[x0, . . . , xn] =: R, we have that g ∈ 〈f〉. Therefore, we have that f is prime in

R if, and only if, f/1 is prime in Rxi by Proposition 2.2.15 (c) and (b). Now f/1 is

prime in Rxi if, and only if, f/xji is prime for j = deg f . Next, f/xji ∈ Rxi is prime

if, and only if, f/xji ∈ R(xi) is prime, since for primality testing one can restrict to

homogenous elements by Proposition 2.3.4 (d), and xi ∈ Rxi is a unit. Now we can

conclude with R(xi)
∼= F[x0, . . . , xi−1, xi+1, . . . , xn].

We use this lemma to show that the homogenous Weierstraß equation is prime

in F[x, y, z] by showing that the dehomogenization for z = 1 is prime in F[x, y]:
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Lemma 4.3.4. Let F be a field and f = y2+a1xy+a3y−x3−a2x
2−a4x−a6 ∈ F[x, y],

where ai ∈ F. Then f is prime in F[x, y].

Proof. Assume that f = −gh with g, h ∈ F[x, y].

Write g, h as polynomials in (F[y])[x] and assume degx g ≥ degx h. Since degx g+

degx h = degx f = 3 and both are integers, either degx g = 3 or degx g = 2. We can

assume that both g and h are monic, seen as polynomials over F[y].

If degx g = 3, then degx h = 0. As h is monic, it must be 1 and, therefore,

−g = f . If degx g = 2, then degx h = 1. Thus g = x2 + ĝ, h = x + ĥ, where

ĝ = ĝ1x+ ĝ0 and ĝ0, ĝ1, ĥ ∈ F[y]. Therefore, gh = x3 +x2(ĥ+ ĝ1)+x(ĝ0 + ĝ1ĥ)+ ĝ0ĥ.

By comparing coefficients we get

ĥ+ ĝ1 = a2, ĝ0 + ĝ1ĥ = a4 − a1y, ĝ0ĥ = a6 − a3y − y2.

Now degy ĥ = degy ĝ1 by the first equation. First, consider degy ĥ = degy ĝ1 = 0;

then degy ĝ0 = 1 by the second equation, contradicting the third equation.

Hence, degy ĥ = degy ĝ1 > 0. By the second equation we get degy ĝ0 = degy ĥ+

degy ĝ1 ≥ 2, but this contradicts the third equation.

Therefore, we can conclude:

Corollary 4.3.5. Let R be a ring and f = y2z + a1xyz + a3yz
2 − x3 − a2x

2z −
a4xz

2−a6z
3 ∈ R[x, y, z], where ai ∈ R. If m is a maximal ideal of R, then f mod m

is prime over R/m, where R/m is the algebraic closure of R/m. Moreover, f is a

non-zero-divisor.

Proof. That f is a non-zero-divisor can be seen by taking a monomial order ≤ on

N3 such that x3 is the leading term of f .

Together with the results from Section 3.8.2 we can conclude:

Corollary 4.3.6. Let Ea/R be an elliptic curve over a ring R. Then the scheme Ea

over SpecR is a generalized elliptic curve.

Proof. This follows from Corollary 4.3.5, Proposition 3.8.14 and Proposition 4.2.4 (b).

Remark 4.3.7. As already noted it can be shown that every generalized elliptic

curve over SpecR has this form (see [KM85, pp. 67–69, Section 2.2]).

4.3.1 The Set of Points

In the Theory of Schemes there is the concept of the Functor of Points for a scheme:

assume X is a scheme over a base S. Then HomS(−, X) is a contravariant functor

from the category Sch(S) of S-schemes to the category Set of sets. Combining this

with the contravariant equivalence of categories of rings and affine schemes, we get

a covariant functor from Ring/R, the category of R-algebras, to Set, if S = SpecR.

We will now show this directly for elliptic curves over rings, where we only consider

points of the form (x : y : z) ∈ P2(R). Note that most of this section is applicable

for any kind of smooth variety over rings, if one defines this correctly.

We first show that an elliptic curve Ea/R gives a covariant functor:
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Proposition 4.3.8. Let ϕ : R→ S be a morphism of rings and a ∈ R5 the defining

vector for an elliptic curve over R. Then Eϕ(a) is an elliptic curve over S with

defining vector ϕ(a) and then ϕ extends naturally to a map ϕ̃ : Ea(R) → Eϕ(a)(S).

Proof. That Eϕ(a) is an elliptic curve follows directly from the fact that ring mor-

phisms map units onto units. For the next statement compare Lemma 3.1.4, and

note that if (x : y : z) ∈ Ea(R) satisfies a Weierstraß equation, then ϕ̃(x : y : z) =

(ϕ(x) : ϕ(y) : ϕ(z)) clearly satisfies the image of the Weierstraß equation under

ϕ.

Remark 4.3.9. Let R be a ring and m a maximal ideal, and ϕ : R → R/m the

canonical projection. Since Eϕ(a) is an elliptic curve over a field if Ea is an elliptic

curve over R, one sees at once that every point of the form (x : y : z) ∈ Ea(R) with

z ∈ m must satisfy x ∈ m, since (0 : 1 : 0) ∈ Eϕ(a)(R/m) is the only infinite point.

We next show that this functor preserves direct products:

Proposition 4.3.10. Let R = R1 × R2 be a ring, and let ϕi : R → Ri, i = 1, 2

the projections. Let Ea be an elliptic curve over R and let ϕ̃i : Ea(R) → Eϕi(a)(Ri),

i = 1, 2 be the induced maps. Then there is a natural bijection

Ea(R) ∼= Eϕ1(a)(R1) × Eϕ2(a)(R2)

given by (ϕ̃1, ϕ̃2).

Proof. Since x1 + x2 ∈ R∗ for xi ∈ Ri if and only if xi ∈ R∗
i for both i, and

R = R1 ×R2, one easily sees that the induced maps P2(R) → P2(R1) × P2(R2) and

Ea(R) → Eϕ1(a)(R1) × Eϕ2(a)(R2) are bijections.

Next we present an important result which gives more information in a special

case of Remark 4.3.9, which is extremely important for applications:

Lemma 4.3.11. Let R be a local Artinian ring with maximal ideal m, and R →
R/m be the canonical projection. If Ea is an elliptic curve over R, the induced

map Ea(R) → Ea mod m(R/m) is surjective, and for every point in Ea mod m(R/m)

there is a bijection between its preimage and m.

Proof. Let q : R → R/m be the projection and q̃ : Ea(R) → Ea mod m(R/m) the

induced map. Let

f = x3 + a2x
2z + a4xz

2 + a6z
3 − y2z − a1xyz − a3yz

2 ∈ R[x, y, z]

be the defining polynomial of Ea/R, and let (x̂ : ŷ : ẑ) ∈ Ea mod m(R/m).

If ẑ = 0, we know that x̂ = 0 and ŷ = 1 since the only infinite point is ∞ = (0 :

1 : 0). So we are first interested in all (x : y : z) ∈ Ea(R) which are mapped onto

(0 : 1 : 0) by q̂. Clearly y must be a unit, and x and z non-units. We can assume that

y = 1. Hence, we are trying to count the non-unit solutions x and z to the equation

f(x, 1, z) = 0. Let x be any element of m. Then f(x, 1, z) = x3 + axz2 + bz3 − z ∈
R[z] and df

dz (x, 1, 0) ≡ −1 (mod m) and, thus, by Proposition 2.1.9 (note that m

is nilpotent by Lemma 2.2.21) we know that there is exactly one z ∈ m such that

(x : 1 : z) ∈ Ea(R).
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If ẑ 6= 0, we are interested in all (x : y : 1) ∈ Ea(R) such that x + m = x̂ and

y+m = ŷ. Since Ea mod m(R/m) is a smooth curve, we know that ( dfdx ,
df
dy )(x̂, ŷ, 1) 6=

(0, 0). Therefore, by either fixing x ∈ x̂ or y ∈ ŷ, we find exactly one y ∈ ŷ or x ∈ x̂,

respectively, such that (x : y : 1) ∈ Ea(R).

We are now able to provide a formula for the number of points of an elliptic

curve over a finite ring R, which reduces the problem of counting points over a ring

to the problem of counting points over a field in case that the decomposition of R

into local rings and their maximal ideals are known.

Corollary 4.3.12. Let R =
∏n
i=1Ri, where the Ri’s are finite local rings with

maximal ideals mi. Let Ea be an elliptic curve over R, where a = a1 + · · · + an,

ai ∈ R5
i . Then

|Ea(R)| =
n∏

i=1

|Eai(Ri)| =
n∏

i=1

|mi| · |Eai mod mi(Ri/mi)| .

In this formula, the Eai mod mi(Ri/mi) are elliptic curves over the finite fields Ri/mi.

Remark 4.3.13. Note that by Corollary 2.2.20, every finite ring R can be written

as the product of finite local rings. If this isomorphism can be effectively computed

and the reductions Ri → Ri/mi can also be effectively computed, then one can

compute |Ea(R)| for an elliptic curve Ea over R by computing |Ea mod m(R/m)|
over the finite field R/m for every maximal ideal m of R. And for this case we know

effective algorithms (see Section 4.2.9).

Corollary 4.3.14. Let R be a finite ring. If Ea is an elliptic curve over R, then

|Ea(R)|
|R| =

∏

m∈SpecR

|Ea mod m(R/m)|
|R/m| .

Proof. By the Structure Theorem for Artinian Rings write R =
∏n
i=1Ri, with the

Ri’s finite local rings with maximal ideals mi ⊆ Ri. Then the m(i) := R1 × · · · ×
Ri−1 × mi × Ri+1 × · · · × Rn are exactly the maximal ideals of R, and SpecR =

{m(1), . . . ,m(n)}. Therefore, we have

|Ea|
|R| =

n∏

i=1

|mi| |Ea mod m(i)(Ri/mi)|
|Ri|

=
n∏

i=1

|Ea mod m(i)(Ri/mi)|
|Ri/mi|

=
n∏

i=1

∣∣Ea mod m(i)(R/m(i))
∣∣

∣∣R/m(i)
∣∣ =

∏

m∈SpecR

|Ea mod m(R/m)|
|R/m| .

We will now fix a notation we will use quite often:

Notation 4.3.15. If R =
⊕n

i=1Ri with projections pi : R → Ri, or a is an ideal

of R, and Ea/R an elliptic curve, we will write Ea/Ri or Ea/(R/a) instead of the

(formally correct) Epi(a)/Ri or Ea mod a/(R/a), respectively. The same also holds

for Ea(Ri) and Ea(R/a).
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Remark 4.3.16. With the help of Proposition 4.3.10, Lemma 4.3.11 and by Re-

mark 2.1.10 we can describe an effective method for finding a point on an elliptic

curve Ea/R over an Artinian ring in case that its decomposition R =
∏n
i=1Ri into

local Artinian rings and their maximal ideals are given. If the mi’s are the maxi-

mal ideals of the Ri’s, we first find points Pi ∈ Ea(Ri/mi). By Remark 2.1.10 and

the Proof of Lemma 4.3.11 we can effectively lift these to points P̂i ∈ Ea(Ri), i. e.

modulo mi we have that P̂i reduces to Pi for 1 ≤ i ≤ n. By the bijection from

Proposition 4.3.10 we then obtain a point P ∈ Ea(R) from the P̂i’s.

4.3.2 The Group of Points

Before trying to find explicit formulae for computing the group law we inspect what

consequences the group law has in our context. In this subsection we will always

work with rings R such that Pic(SpecR) = 0. By Corollary 3.5.3 and the results

from Section 2.4 this is, for example, fulfilled if R has finitely many maximal ideals,

hence, this includes the case of fields, Artinian rings and finite rings.

Let Ea be an elliptic curve defined over R. Then by Corollary 4.3.6, the scheme

Ea/ SpecR

is a generalized elliptic curve. By Proposition 3.6.5 there is a natural one-to-

one correspondence between points P ∈ Ea(R) and between R-valued points s ∈
Ea(SpecR) (scheme-theoretic points). Thus, we will identify Ea(R) and Ea(SpecR)

from now on.

By Corollary 4.1.9 the (scheme-theoretic) points of Ea form an Abelian group,

where for three points s1, s2, s3 ∈ Ea(R) we have s1 + s2 = s3 if, and only if,

[s1] + [s2] ∼ [s3] + [∞],

where ∞ = (0 : 1 : 0) is the base point. From Corollary 4.1.8 we know that if

R = R1×R2, then Ea(R) ∼= (Ea)R1(R1)×(Ea)R2(R2). But now by Proposition 3.4.11

we know (Ea)Ri = Eϕi(a), where ϕi : R→ Ri is the projection. Therefore,

Ea(R) ∼= Eϕ1(a)(R1) × Eϕ2(a)(R2).

Moreover, if ϕ : R → S is an arbitrary ring morphism, then since Ea/R is a group

scheme, the induced morphism Ea(R) → Eϕ(a)(S) is compatible with the group

structure. Hence, the bijection in Proposition 4.3.8 is the map of points for the

isomorphism Ea(R) ∼= Eϕ1(a)(R1) × Eϕ2(a)(R2) as schemes.

Now, assume that S is an arbitrary ring extension of R, i. e. it does not necessarily

satisfy Pic(SpecS) = 0. Then for all points P1, P2 ∈ Ea(S) satisfying that there is

an intermediate ring Ŝ between R and S such that Pic(Spec Ŝ) = 0 and P1, P2 ∈
P2(Ŝ), the sum P1 + P2 ∈ Ea(S) lies in P2(Ŝ) ⊆ P2(S) because of the natural

injection Ea(Ŝ) ↪→Ea(S). Therefore, theoretically, we could also work with rings R,

which do not satisfy Pic(SpecR) = 0, by restricting to certain points of Ea(R),

which would form a subgroup.

4.3.3 A “Geometric” Group Law on Ea(R)

We now want to define a “geometric” group law on Ea(R) for R, a ring satisfying

PicR = 0. The definition originated with H. W. Lenstra in [Len86]. It turns out
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that this group law satisfies the same properties as the ones we found for the natural

group law on the generalized elliptic curve Ea/R, as seen in the last subsection. We

will ultimately see that this group law corresponds to the group law as defined

previously in Abel’s Theorem 4.1.6.

Before we start we want to explain why we have decided to call this group law

“geometric”: it uses the formulae developed from the geometric Chord and Tangent

Law of elliptic curves over fields in Section 4.2.2.

Let R be a ring such that Pic(SpecR) = 0. We characterized the latter property

in Section 2.4 (see also Corollary 3.5.3). One of the main results which is essential for

defining the group law is Corollary 2.4.23, which says that for a ring R the following

conditions are equivalent:

(i) Every projective R-module of rank one is free. (By Corollary 3.5.3, this is

equivalent to Pic(SpecR) = 0.)

(ii) For every primitive matrix A ∈ Rn×m, such that every two-by-two minor

vanishes, there exists an R-linear combination of the columns (or alternatively

the rows) of A, which is primitive. Moreover, the linear combination is unique

up to multiplication by units.

Recall that we have a complete set of addition laws for elliptic curves, which is

parameterized by the coefficients of the Weierstraß equation (see Section 4.2.3). Let

this be given by the polynomials ϕi,j ∈ S, 1 ≤ i ≤ 2 and 0 ≤ j ≤ 2, where

S = Z[a1, a2, a3, a4, a6][x1, y1, z1, x2, y2, z2].

Then ϕi,a := (ϕi,0(a), ϕi,1(a), ϕi,2(a)) ∈ (R[x1, y1, z1, x2, y2, z2])
3 is one addition for-

mula for the definition vector a ∈ R5.

Let Ea be a curve over R and let P1, P2 ∈ Ea(R). Consider the matrix

Ma(P1, P2) =
(
ϕi,a(P1, P2)

)
1≤i≤2

.

If m is a maximal ideal of R, then modulo m these are the addition formulae for the

elliptic curve Ea mod m(R/m) over the field R/m. Since P1 mod m and P2 mod m

are valid points on Ea mod m(R/m), this matrix is nonzero modulo m. Therefore,

Ma(P1, P2) is primitive. By Proposition 4.2.19 (a) all two-by-two minors vanish.

Then, by the assumption on R, there exists a unique primitive R-linear combina-

tion of the rows of Ma, which is uniquely determined up to multiplication by units.

Therefore it defines a unique point in P2(R) and, since fa(ϕi,a) = 0 by Proposi-

tion 4.2.19 (b), it is a point in Ea(R). Define this point as P1 ⊕ P2. We get the

following result:

Corollary 4.3.17. For any ring R satisfying PicR = 0, and any elliptic curve Ea/R,

the set of R-rational points Ea(R) becomes an Abelian group under the operation ⊕.

Proof. This follows from Proposition 4.2.19.

As showing this by explicit computations carried out by a computer algebra

system is not very enlightening, we will show this in a completely different way.
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Before continuing we want to remark why the requirement PicR = 0 is needed:

(a) If PicR 6= 0, then by Corollary 2.4.23 one cannot necessarily compute a primitive

linear combination from the rows of Ma(P1, P2).

(b) A more intrinsic reason is that by Proposition 3.4.33, points on an elliptic curve

over an arbitrary ring R are, in general, represented by projective R-modules of

rank one and three elements of it, which generate the module. Hence, locally,

every point is of the form (x : y : z) ∈ P2(Rp), p ∈ SpecR, but not globally and,

therefore, the sum of two points P1, P2 ∈ P2(R) might not again be in P2(R)

but only locally in P2(Rp), p ∈ SpecR.

For the moment let us assume that we have shown that ⊕ defines a valid

group law. If R is a finite ring, with the tools developed earlier, like the algo-

rithm ComputePrimitiveCombination (see page 49) or specializations for special

rings, one can efficiently compute P1⊕P2, especially as we have a 2×3 matrix. (See

also the discussion before the description of the algorithm.)

Moreover, if ϕ : R → S is a ring morphism, where S is also a ring satisfy-

ing Pic(SpecS) = 0, consider the induced map ϕ̃ : Ea(R) → Eϕ(a)(S). One can

easily see that it becomes a group morphism under the operation ⊕.

Now we come to a construction that will ultimately show that ⊕ is the same as

+ on Ea(R).

Let R be any ring. Clearly R is a Z-algebra and, therefore, can be written as a

quotient S/a of S = Z[{xi | i ∈ I}], where I is some (possibly very large) index set

and a is an ideal in S. Now S is an integral domain and, therefore, it has a field of

fractions K = K(S), which clearly has an algebraic closure K. As for elliptic curves

over K, the addition formulae clearly work, and we will ultimately reduce to this

case. Let Ea/R be any elliptic curve with defining vector a ∈ R5, and let â ∈ S5

be a lift of a, i. e. a vector such that âi mod a = ai for every i. Let ∆̂ = ∆â be

the discriminant of Eâ/S, define U := {∆̂n | n ∈ N} and let Ŝ = U−1S; as ∆ 6= 0

(otherwise ∆a = 0 and, therefore, Ea/R would not be an elliptic curve) Ŝ is an

intermediate ring between S and K, and K is the field of fractions of both Ŝ and

S. Moreover, Eâ/Ŝ is an elliptic curve.

We now have that the scheme Ea/R is a closed subscheme of Eâ/Ŝ (in the sense

that both Ea is a closed subscheme of Eâ, and SpecR is a closed subscheme of

Spec Ŝ, since ∆a ∈ R is invertible), and Eâ and Spec Ŝ are both integral schemes.

We also have that the integral scheme Eâ/K is the geometric fibre of Eâ/Ŝ at the

generic point of Spec Ŝ and, therefore, by Proposition 3.4.15 and the functoriality

of the group law (Theorem 4.1.6), the group law of Eâ/Ŝ is determined by the one

of Eâ/K. As again by the functoriality of the group law, the group law on Ea/R

is determined by the one on Eâ/Ŝ (if m : Eâ ×Ŝ Eâ → Eâ is the group law on

Eâ/Ŝ, then mSpecR is the group law on Ea/R; see also Proposition 3.4.10). Then

the formulae for the group law on elliptic curves over fields from Section 4.2.3 can

also be used for elliptic curves over rings.

As a last step we will explicitly construct the Ŝ-morphism m : Eâ × Eâ → Eâ

given by the formulae from Section 4.2.3. This finally shows that these addition laws

can be used (in some way) for any ring, since by the above argument this morphism

is identical to the group law given by Theorem 4.1.6. (In fact, since any generalized

180



4.3.3. A “Geometric” Group Law on Ea(R)

elliptic curve over an arbitrary base scheme can be obtained by glueing generalized

elliptic curves over rings, and since the base scheme can be obtained by glueing

affine SpecR’s, the group law on any generalized elliptic curve over an arbitrary

base scheme is determined by the formulae from Section 4.2.3.)

Clearly Eâ can be covered by D+(y) and D+(z), since if p is a homogenous prime

of Ŝ[x, y, z]/ 〈f〉, with f a Weierstraß equation, which is not in D+(y)∪D+(z), then

it contains both y and z. But then it also contains x3 since f(x, y, z) = 0 in

Ŝ[x, y, z]/ 〈f〉 and, since p is prime, it therefore contains x. But then p contains the

irrelevant ideal and is therefore not in Proj Ŝ[x, y, z]/ 〈f〉 anyway.

Therefore, we can cover Eâ × Eâ by the four affine subsets

D+(y) ×D+(y), D+(y) ×D+(z),

D+(y) ×D+(z) and D+(z) ×D+(z).

(See Proposition 3.3.24 (b) and Remark 3.4.2.) We construct the map m|U : U → Eâ

exemplary with U := D+(z) × D+(z). By the same method the other maps from

the affine subsets of Eâ×Eâ to Eâ can be constructed, and clearly they coincide on

the intersections and, therefore, define m.

Let the formulae from Section 4.2.3 be denoted by

ϕi,j ∈ ((Ŝ[x1, y1, z1, x2, y2, z2]/ 〈f(x1, y1, z1), f(x2, y2, z2)〉)(z1))(z2)

∼= Ŝ[x1, y1, x2, y2]/ 〈f(x1, y1, 1), f(x2, y2, 1)〉 =: S̃,

where f is the Weierstraß equation for Eâ and 1 ≤ i ≤ 2, 0 ≤ j ≤ 2. We have U =

Spec Ŝ[x1, y1, x2, y2]/ 〈f(x1, y1, 1), f(x2, y2, 1)〉 = Spec S̃ by Lemma 2.1.36. Define

Ui := U \ V (〈ϕi,0, ϕi,1, ϕi,2〉); we claim these sets cover U . Let p ∈ U \ (U1 ∪ U2).

Then ϕi,j ∈ p for all i, j. Let p̂ := Ŝ∩p and p̃ := 〈p̂〉S̃ . Then p goes into a prime ideal

in S̃/p̃⊗Ŝ/p̂ L, where L is the algebraic closure of L, which is the field of fractions

of Ŝ/p̂, by the map S̃ → S̃/p̃ → S̃/p̃⊗K. Moreover, by choosing a maximal

homogenous ideal of S̃/p̃⊗K containing the image of p but not the irrelevant ideal,

we can assume that Ŝ is an algebraically closed field and p is a closed point. But then

ϕi,j ∈ p for all i, j means that the ϕi,j ’s simultaneously vanish at one point (in the

classical sense; see Proposition 3.5.4) on an elliptic curve over K, which contradicts

that the ϕi,j ’s come from a complete system of addition laws (see Theorem 4.2.18).

We now define maps Ui → Eâ by use of the formulae ϕi,j , j = 0, 1, 2. We show

this for i = 1. Assume that the formulae ϕ1,0, . . . , ϕ1,2 do not give results with z = 0

(see Theorem 4.2.18 and the definition of ϕj after the theorem). We define Ui → Eâ

by the affine morphism Ui → D+(z) by the Ŝ-linear ring morphism

(Ŝ[x, y, z]/ 〈f〉)(z) → OEâ×Eâ
|U1(U1),




x
z 7→ ϕ1,0

ϕ1,2
,

y
z 7→ ϕ1,1

ϕ1,2

(note that U1 ⊆ D+(z) ×D+(z), and see [Har77, p. 79, ch. II, Exercise 2.4]).

We have shown the following theorem:

Theorem 4.3.18. Let E be a generalized elliptic curve over a base scheme S. Then

the group law m : E × E → E from Theorem 4.1.6 is locally on S given by the

addition formulae from Section 4.2.3.
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In particular if S = SpecR with a local ring R, all S-points of E are of the

form (x : y : z) ∈ P2(R), and the formulae from Section 4.2.3 can be directly used to

compute the sum of two points.

If S = SpecR with an arbitrary ring R satisfying PicR = 0, we also have that all

S-points of E are of the form (x : y : z) ∈ P2(R). In this situation the addition law

on E can be computed using the algorithm described at the beginning of this section.

The negation formula P 7→ −P from Proposition 4.2.12 can be used for any

R-point of the form (x : y : z) ∈ P2(R) for any affine S = SpecR, without any

restrictions on R.

Proof. By Remark 4.2.5 the curve E is, locally on S, given by a Weierstraß equation;

by the preceeding discussion we can conclude the first part of the claim.

For the second part of the claim note that by Proposition 2.4.12, we have PicR =

0 for every local ring R. Therefore, all S-points of E have the required form by

Proposition 3.6.8. Let P,Q ∈ E(R) be two R-points and ϕi,j a complete set of

addition laws. Since primitive in a local ring means that one element is a unit, we

see that for one i the tuple (ϕi,j(P,Q))0≤j≤2 is primitive and, therefore, this tuple

gives the sum of P and Q; with this we can conclude the second claim.

For the third claim note that points on E are given by a projective R-module P

with three elements of P which locally generate P ; as P is free by assumption,

there exists one element which generates P , and by the matrix condition (see

Lemma 2.4.21) the resulting primitive vector globally generates P and thus defines

a point (see the proof of Proposition 3.6.5). Since by the first claim the group law

is locally given by the formulae from Section 4.2.3, the algorithm at the beginning

of this section therefore computes the sum correctly.

The last claim can be shown by the same methods as in the discussion above.

Therefore, we omit the proof.

Before closing this chapter we want to sketch a more elementary way to prove

this result, at least for Artinian rings. By Corollary 2.2.20, Corollary 2.2.23, Corol-

lary 4.1.8 and Proposition 4.3.10, it is enough to show this for local Artinian rings.

By Proposition 3.8.17 and Corollary 3.8.18, one sees that the structure of K and the

local rings in this case are very close to that of a field. If P = (x1 : y1 : z1) ∈ E(R)

is an R-valued point, we have, moreover:

(a) If z1 6∈ m and y1 6≡ −y1 − a1x1 − a3z1 (mod m), a local parameter of P is given

by
x1z − z1x

z
∈ K∗

E,P .

(b) If z1 6∈ m and y1 ≡ −y1 − a1x1 − a3z1 (mod m), a local parameter of P is given

by
y1z − z1y

z
∈ K∗

E,P .

(c) If z1 ∈ m, a local parameter of P is given by

y1x− x1y

y
∈ K∗

E,P .
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By this, the Cartier divisor induced by the point P can be explicitly described: in

some neighborhood of P it is defined by the local parameter, and on the complement

of {P} it is locally defined by 1 (see [Wal99, p. 96]). Using this representation one

can explicitly compute the tensor product in Theorem 4.1.6, and for every formula

one can show that it remains valid. Unfortunately, even when one wants to show

that −(x1 : y1 : z1) is given by (x1 : −y1 − a1x1 − a3z1 : z1), this computation is

long and requires, moreover, explicit computation of the connecting line of every

two points P,Q ∈ E(R), which is a non-trivial task as, similarly to Section 4.2.3,

finding an open cover of Eâ × Eâ and a formula for every set of the cover can be

hard.

4.3.4 A “Geometric” Interpretation over Artinian Rings

We will now try to give a geometric interpretation of elliptic curves over Artinian

rings. Let R =
⊕n

i=1Ri be the decomposition of an Artinian ring R into the

product of local Artinian rings Ri, and assume Ea/R is an elliptic curve. From the

discussion in Remark 3.8.15 we know that Ea/R can be seen as the disjoint union of

the curves Ea/Ri, i = 1, . . . , n. Therefore, we want to concentrate on the case that

R is local.

We have seen that if R is local with maximal ideal m, and Ea/R is an elliptic

curve, then Ea/(R/m) is an elliptic curve over the residue field R/m and there is

a surjective homomorphism Ea(R) → Ea(R/m), which maps exactly |m| points of

Ea(R) onto every point of Ea(R/m).

If one sees nilpotent elements of R as “infinitesimal” elements, one could inter-

pret the R-rational points Ea as the R/m-rational points of Ea together with an

infinitesimal neighborhood of points for every R/m-rational point.

4.3.5 Examples

In this subsection we consider examples of curves over the finite ring Z12, which is

isomorphic to Z3 × Z4 by the Chinese Remainder Theorem. Note that Z12 is the

smallest commutative non-local ring with a unit that is not a product of fields and

which can be represented by a quotient of Z.

By computer experiments we found the following curves over Z12 with the given

number of Z12-rational points:

(a) y2z + xyz = x3 − xz2 with 48 points.

(b) y2z − 5xyz + 2yz2 = x3 + 4x2z + 5xz2 + 6z3 with 40 points;

(c) y2z − 4xyz − yz2 = x3 + 6x2z − 4xz2 + 3z3 with 36 points;

(d) y2z + 6xyz + 3yz2 = x3 + 5x2z − 5xz2 + 4z3 with 30 points;

(e) y2z − 3xyz + 4yz2 = x3 + 1x2z + 5xz2 − 4z3 with 24 points;

(f) y2z + 4xyz − 5yz2 = x3 + 3x2z + 5xz2 − 5z3 with 18 points;

(g) y2z + xyz − 2yz2 = x3 − x2z + 2xz2 − 5z3 with 16 points;

(h) y2z − 5xyz − 3yz2 = x3 − 2x2z − 5xz2 + 5z3 with 8 points;
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(i) y2z + xyz + 2yz2 = x3 − x2z + xz2 + 4z3 with 4 points.

In the following we want to inspect the curve in (f), namely

y2z + 4xyz − 5yz2 = x3 + 3x2z + 5xz2 − 5z3,

which has 18 Z12-rational points. Hence, with a = (4,−5, 3, 5,−5), this is the curve

Ea/Z12 using the notation from Definition 4.3.1.

The Curve over Z2

The equation reads y2z + yz2 = x3 + x2z + xz2 + z3 modulo 2. One quickly finds

the three Z2-rational points

P2,0 = (0 : 1 : 0), P2,1 = (1 : 0 : 1) and P2,2 = (1 : 1 : 1),

and the group of Z2-rational points is isomorphic to Z3 with the identity being P2,0.

The Curve over Z4

The equation reads y2z− yz2 = x3 − x2z+ xz2 − z3 modulo 4. We already know by

Lemma 4.3.11 that the Z4-rational points of this curve are all lifts of the Z2-rational

points of the curve in Section 4.3.5. A quick computer search finds the following

points:

P4,0 = (0 : 1 : 0), P4,1 = (1 : 0 : 1), P4,2 = (3 : 0 : 1),

P4,3 = (1 : 1 : 1), P4,4 = (3 : 1 : 1) and P4,5 = (2 : 1 : 0).

The natural reduction map Ea/Z4 → Ea/Z2 looks as follows:

P4,0 7→ P2,0, P4,1 7→ P2,1, P4,2 7→ P2,1,

P4,3 7→ P2,2, P4,4 7→ P2,2 and P4,5 7→ P2,0.

The kernel of this map has cardinality 2 and, therefore, the kernel is isomorphic to

Z2. The composition table for the Z4-rational points looks as follows:

+ P4,0 P4,1 P4,2 P4,3 P4,4 P4,5

P4,0 P4,0 P4,1 P4,2 P4,3 P4,4 P4,5

P4,1 P4,1 P4,4 P4,3 P4,0 P4,5 P4,2

P4,2 P4,2 P4,3 P4,4 P4,5 P4,0 P4,1

P4,3 P4,3 P4,0 P4,5 P4,2 P4,1 P4,4

P4,4 P4,4 P4,5 P4,0 P4,1 P4,2 P4,3

P4,5 P4,5 P4,2 P4,1 P4,4 P4,3 P4,0

One can see that the group Ea(Z4) is isomorphic to Z6 by the isomorphism

P4,0 7→ 0 + 6Z, P4,1 7→ 1 + 6Z, P4,2 7→ 4 + 6Z,

P4,3 7→ 5 + 6Z, P4,4 7→ 2 + 6Z and P4,5 7→ 3 + 6Z.

Moreover, it is obvious that the natural reduction Ea(Z4) → Ea(Z2) is a group

morphism.
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The Curve over Z3

The equation reads y2z + xyz + yz2 = x3 − xz2 + z3 modulo 3. One quickly finds

the three Z3-rational points

P3,0 = (0 : 1 : 0), P3,1 = (2 : 2 : 1) and P3,2 = (2 : 1 : 1),

and the group of Z3-rational points is isomorphic to Z3 with the identity being P3,0.

The Curve over Z12

Since Z12
∼= Z4 × Z3 we get Ea(Z12) ∼= Ea(Z4) × Ea(Z3), and hence the curve is

expected to have 18 = 6 · 3 Z12-rational points. A quick computer search finds the

following points, here given with their reduction modulo 4 and 3:

mod 12 mod 4 mod 3

P12,0 = (0 : 1 : 0) P4,0 P3,0

P12,1 = (5 : 5 : 1) P4,3 P3,1

P12,2 = (5 : 8 : 1) P4,1 P3,1

P12,3 = (11 : 8 : 1) P4,2 P3,1

P12,4 = (5 : 1 : 1) P4,3 P3,2

P12,5 = (11 : 5 : 1) P4,4 P3,1

P12,6 = (5 : 4 : 1) P4,1 P3,2

P12,7 = (11 : 4 : 1) P4,2 P3,2

P12,8 = (11 : 1 : 1) P4,4 P3,2

mod 12 mod 4 mod 3

P12,9 = (2 : 1 : 4) P4,5 P3,2

P12,10 = (10 : 1 : 8) P4,5 P3,1

P12,11 = (3 : 1 : 9) P4,4 P3,0

P12,12 = (3 : 4 : 3) P4,1 P3,0

P12,13 = (3 : 4 : 9) P4,2 P3,0

P12,14 = (9 : 1 : 9) P4,3 P3,0

P12,15 = (4 : 1 : 8) P4,0 P3,1

P12,16 = (8 : 1 : 4) P4,0 P3,2

P12,17 = (6 : 1 : 0) P4,5 P3,0

The composition table is as follows, where we write i instead of P12,i:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 7 16 9 13 6 0 17 12 11 8 2 15 10 3 4 14 5

2 2 16 8 4 0 9 11 14 17 13 7 10 5 1 15 6 12 3

3 3 9 4 8 17 16 14 11 0 12 6 15 1 5 10 7 13 2

4 4 13 0 17 3 12 15 10 2 5 11 6 16 9 7 14 1 8

5 5 6 9 16 12 7 17 0 13 14 4 3 10 15 2 8 11 1

6 6 0 11 14 15 17 5 1 10 3 13 9 8 4 16 12 2 7

7 7 17 14 11 10 0 1 5 15 2 12 16 4 8 9 13 3 6

8 8 12 17 0 2 13 10 15 3 1 14 7 9 16 6 11 5 4

9 9 11 13 12 5 14 3 2 1 15 0 4 7 6 8 17 10 16

10 10 8 7 6 11 4 13 12 14 0 16 1 3 2 5 9 17 15

11 11 2 10 15 6 3 9 16 7 4 1 13 17 0 12 5 8 14

12 12 15 5 1 16 10 8 4 9 7 3 17 11 14 0 2 6 13

13 13 10 1 5 9 15 4 8 16 6 2 0 14 11 17 3 7 12

14 14 3 15 10 7 2 16 9 6 8 5 12 0 17 13 1 4 11

15 15 4 6 7 14 8 12 13 11 17 9 5 2 3 1 16 0 10

16 16 14 12 13 1 11 2 3 5 10 17 8 6 7 4 0 15 9

17 17 5 3 2 8 1 7 6 4 16 15 14 13 12 11 10 9 0

Since the natural bijection Ea(Z12) ∼= Ea(Z4) × Ea(Z3) is a group morphism, we

know by the previous paragraphs that Ea(Z12) ∼= Z6 × Z3.

Finally we want to demonstrate cases where the addition formulae from Sec-

tion 4.2.3 return two triples in Z3
12, which are both not primitive, but can be

used to form a primitive element. This is the case if, and only if, one formula

gives (0, 0, 0) modulo 2, while the other gives (0, 0, 0) modulo 3. For example, if one

adds P12,17 = (6 : 1 : 0) and P12,11 = (3 : 1 : 9), one gets the results A := (3, 3, 3)

and B := (0, 4, 0). For modulo 2, we have P12,17 = (0 : 1 : 0) and P12,11 = (1 : 1 : 1),

while for modulo 3 we have P12,17 = (0 : 1 : 0) and P12,11 = (0 : 1 : 0). We now want
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to apply algorithm ComputePrimitiveCombination (see page 49) to this situation,

i. e. to the matrix (
3 3 3

0 4 0

)
∈ Z2×3

12 .

It is clearly primitive, as 〈3, 4〉
Z12

= Z12, and the two-by-two minors all vanish since

3 · 0 = 3 · 4 = 0 ∈ Z12. As |Z12| = 12, for t = 3 we have 2t+1 = 16 > |Z12|. For

the first entry c := 3, we have ct = 3 ∈ Z12. Thus, c is not nilpotent. Now we need

an x ∈ Z12 such that 9 = ct+1x = ct = 3. This is satisfied by x = 3 and x = 7.

Choosing x := 7, we get xt = 7 and ê := ctxt = 9. Clearly ê 6= 1 and, hence, ê is a

non-trivial idempotent. Indeed, 92 = 9 ∈ Z12. We compute

A′ := (1 − ê)A =

(
0 0 0

0 4 0

)
∈ (Z12(1 − ê))2×3.

By applying this algorithm to A′ ∈ (Z12(1− ê))2×3, we get the primitive combination

0A′
1• + (1 − ê)A′

2• over Z12(1 − ê) and, hence, the algorithm terminates with the

primitive combination

êA1• + (1 − ê)A2• = (3, 7, 3) ∈ Z3
12.

Clearly 7 ∈ Z∗
12 and 7−1 = 7 ∈ Z∗

12 and, thus, this is the point (9 : 1 : 9) = P12,14,

which is the same result as in the above composition table.

4.4 The Non-Commutative Case

We have seen in the commutative case that being able to reduce rings leads to a

method to reduce the groups of points of elliptic curves over these rings. Therefore,

it would be good that such reductions are not possible. But a commutative ring

with no non-trivial ideals is a field, so we will not get anything new in contrast to

the Theory of Elliptic Curves over Fields.

The situation is different if one does not require the rings to be commutative.

We first want to describe all finite non-commutative rings that are simple in the

sense that they have no non-trivial ideals. For this section with ring we mean a not

necessarily commutative ring that has a unit.

Definition 4.4.1.

(a) A ring R is a division ring if every non-zero element has a multiplicative inverse.

(b) A ring R whose only two-sided ideals are R and 0 is called simple. This is

equivalent to saying that 0 is a maximal ideal.

(c) A ring R is Artinian if both descending chains of left-ideals and descending

chains of right-ideals stabilize.

Theorem 4.4.2 (Wedderburn). [SS88, II, p. 76, Satz 55.9] A finite division ring

is commutative.

Theorem 4.4.3 (Artin-Wedderburn). [Jac68, p. 39, ch. III, Theorem 1] An

Artinian ring R is simple if, and only if, R ∼= Kn×n for an integer n ∈ N>0 and a

division ring K.
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Corollary 4.4.4. A finite ring R is simple if, and only if, R ∼= Fn×nq for some

prime power q and some integer n ∈ N>0.

As Fn×nq is commutative if and only if n = 1, the smallest example for a non-

commutative simple ring is R := F2×2
2 , which has 16 elements.

In the following we want to consider if it makes sense to consider elliptic curves

over such rings, and in particular over this example R = F2×2
2 . But when trying

to consider elliptic curves over non-commutative rings, we are faced with several

problems:

• The reason to use elliptic curves C over fields F is that there is a natural

bijection Pic0(C/F)
∼=→ C(F). If one wants to work over non-commutative

rings (even division rings), one first has to define what a curve over such rings

is, and find a family of curves, a (natural) group attached to each of these

curves, and a (natural) bijection between this group and the rational points

over this ring. This involves a deep understanding of algebraic geometry and

will not be done in this thesis.

• A simpler approach would be to try to take the definitions from commuta-

tive rings over to non-commutative rings. But this is problematic for several

reasons, the most important one being the following:

How to define a ring of polynomials over a non-commutative ring? If, for

example, x and y are indeterminates over a ring R, and one assumes that

xy = yx, then the insertion map R[x, y] → R, x 7→ a, y 7→ b for an arbitrary

tuple (a, b) ∈ R2 is not well-defined in the cases ab 6= ba. But if xy 6= yx, then

monomials like xyx cannot be simplified, which is an awkward situation.

Note that with R[x, y] we mean the non-commutative algebra generated by

the indeterminates x and y; in the case that R is commutative, this does not

correspond to the usual meaning of R[x, y] in (almost) all other parts of this

thesis! (The only exception is Definition 2.1.37 (a).)

• Moreover, a polynomial axbxc with a, b, c ∈ R can also not be simplified to

abcx2. If one assumes that a, b, c are in the center of R, i. e. they commute with

any other element in R, one could try to define ax = xa, bx = xb and cx = xc

and so on, but what if one extends the ring to a larger ring S in which a, b, c

are no longer in the center? In this case, the natural inclusion R[x] ↪→S[x] is

not a ring morphism!

One way to circumvent this problem in order to get a functorial behavior is to

use coefficients that come from the natural map Z → R.

For the rest of this section we want to examine the idea of using an elliptic

curve defined over Z2 with the usual addition formulae, but where the points have

coordinates in the non-commutative simple ring R = F2×2
2 . We denote the center of

R by

C(R) := {x ∈ R | xa = ax for all a ∈ R}.

Lemma 4.4.5. We have C(Rn×n) = R1Rn×n = {r1Rn×n | r ∈ R} for any ring R.
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Proof. Clearly R1Rn×n ⊆ C(Rn×n). Let (aij)ij , (bij)ij ∈ Rn×n. If one writes down

the equations for (aij)ij(bij)ij = (bij)ij(aij)ij , one can quickly see that this is only

valid for a fixed (aij)ij and any (bij)ij , if aij = 0 is satisfied for any pair (i, j) with

i 6= j. Now, if akk 6= a``, we see that if bij = 0 for all i, j except bk` = 1, we get

(aij)ij(bij)ij 6= (bij)ij(aij)ij .

Next we must define what we mean by points of an elliptic curve over a ring. If

one defines the projective plane over a non-commutative ring the same way as over

a commutative ring, one has several problems:

• What does primitive mean? If one takes the same definition as for commutative

rings, i. e. the elements generate the ring as an ideal, one first has to decide

whether as a left, right or two-sided ideal. If one considers two-sided ideals,

since R is simple, any triple (x, y, z) ∈ R3, where x, y, z are not all zero, would

be primitive. We postpone this question until later.

• Which elements are identified? One could define (ai)i ∼ (bi)i if, and only if,

there are λ, µ ∈ R∗ such that λaiµ = bi for all i. Alternatively, one could

restrict oneself to multiplying only from the left or only from the right side.

The problem with this is that, in general, in none of these cases ∼ is transitive.

One might want to consider a subgroup of R∗ which lies in the center of R, or

in the image of Z in R.

Another reason why this question is problematic is that if (ai)i ∼ (bi)i, then

f(a) should vanish if, and only if, f(b) vanishes for a homogenous polynomial f .

As above, if the coefficients of the polynomial commute with any element of a

ring extension, in general most λ ∈ R∗ do not commute with any element of

R.

Therefore, it seems to be good decision to restrict to elements of C(R)∗ :=

R∗ ∩ C(R). In this case it also does not matter if one multiplies from the

left or from the right. In our case (R = F2×2
2 ), we have C(R)∗ = {1R}, i. e.

(ai)i ∼ (bi)i if, and only if, (ai)i = (bi)i.

We consider the curve

y2z + ( 0 0
0 0 )xyz + ( 1 0

0 1 ) yz2 = x3 + ( 1 0
0 1 )x2z + ( 1 0

0 1 )xz2 + ( 1 0
0 1 ) z3

over F2×2
2 . A quick computer search finds 447 points, where we ad-hoc define points

as triples (a0, a1, a2) ∈ F2×2
2 \ {(0, 0, 0)}, where two of them are identified if they are

equal. (Note that this is the same curve as in Section 4.3.5.)

It turns out that for 9600 pairs of such points, the addition formulae work in the

sense that

• both produce a point on the curve (tested by plugging into the curve equation);

and

• if both formulae give non-zero results, the results are the same.

188



4.4. The Non-Commutative Case

The working pairs are shown as black dots in the following image, where the

origin is in the lower left corner:

(Note that the black border is not part of the pairs of points.)

Finding a subset of the points with the property that

(a) for every two points in the set the addition is defined;

(b) the result lies in the subset; and

(c) the cardinality of this subset is maximal

is a hard problem that is easily seen to be NP complete (the Clique problem can

be reduced to this problem; for information about Clique see for example [HMU01,

p. 462, Exercise 10.4.1]). Finding large such sets is not feasible, especially if one

uses curves over large simple rings with many points. It is also important that if

one chooses a subset of the set of points, the coordinates of the points of this subset

do not lie in a proper subring of R, which would be either Fq (in this case we are in

the case of usual elliptic curves over fields) or a non-simple ring (which is not what

we want).

For these reasons I conclude that one should study some non-commutative ge-

ometry before continuing in the direction of groups of points of curves over non-

commutative finite rings.

Before closing this section we want to note that there are three embeddings of the

usual group of points over Fq into the group of points over F2×2
q , which are correspond

to the embeddings Fq ↪→F2×2
q given by 1 7→ ( 1 0

0 1 ), 1 7→ ( 1 0
0 0 ) and 1 7→ ( 0 0

0 1 ). By

Lagrange’s Theorem this implies that, not depending on how exactly P2(Fn×nq ) is
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defined, it is always possible to find subgroups in the group of points that correspond

to the group of points of an elliptic curve over a field.
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Applications in Factoring and

Cryptography

5.1 Factoring

The first use of elliptic curves over rings was to factor large integers n ∈ N: H. W. Len-

stra took the idea of Pollard’s (p − 1)-Method and replaced the multiplicative

group Z∗
p, p being a factor of n, with the group of points of an elliptic curve over Zp.

The reason is that for an elliptic curve over Zp, the order of the group varies around

p+ 1 and is not fixed as for Z∗
p, where it is always p− 1. We will describe both the

Pollard (p− 1)-Method and Lenstra’s Elliptic Curve Method in Section 5.1.2.

In fact, Lenstra’s method can be described without knowing what an elliptic

curve over a ring is. But it turns out that there is a close connection between

factoring an integer n and counting points of an elliptic curve over Zn. We will

treat this in Section 5.1.3. Moreover, the Elliptic Curve Method by Lenstra can

be generalized and used to decompose Artinian rings into local Artinian rings; we

will present this generalization and a runtime analysis in Section 5.1.4. Finally, we

show that this can be used to solve another problem, namely, computing a primary

decomposition of a zero-dimensional ideal in Fq[x1, . . . , xn]. This will be investigated

in Section 5.1.5.

5.1.1 Smooth Numbers

Before we start with factoring integers, we want to introduce a concept from Number

Theory. This concept is the notion of an integer being smooth. Informally this

should express that it only has small prime factors. It is clear that such numbers

are relatively easy to factor, for example, by trial division. We will need results

on smooth numbers during the process of analyzing the running time of the ring

decomposition algorithm, and we need information on how they are distributed

through the set of natural numbers. Unfortunately, we will use two conjectures about

the distribution of smooth numbers in the runtime analysis. One is by H. W. Lenstra

and is, in fact, based on a theorem by Norton, Canfield, Erdős and Pomerance, which

we cite below. Before that we have to give the exact definition of an integer being

smooth:
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Definition 5.1.1. Let B > 0 be a positive integer. Then another integer n > 0 is

called B-smooth if every prime factor of n is less or equal than B.

Theorem 5.1.2 (Norton, Canfield, Erdős, Pomerance). [Coh96, p. 473,

Theorem 10.2.1] Let ψ(x, y) := |{n ≤ x | n ∈ N, n is y-smooth}|. Then, if we set

u = log x
log y , we have

ψ(x, y) = xu−u(1+o(1))

uniformly for x→ ∞ if (log x)ε < u < (log x)1−ε for a fixed ε ∈ ]0, 1[.

In particular, if we set L(x) = e
√

log x·log log x, then

ψ(x, L(x)a) = xL(x)−1/(2a)+o(1).

5.1.2 Factoring Integers

Factoring integers is a very old problem, and also a hard one. It is simple to find

an algorithm that solves this problem, namely trial division, but it is too slow for

large numbers. In the past there have been many proposals for faster factoring

algorithms, for example Pollard’s (p− 1)-Method, Lenstra’s Elliptic Curve Method,

and the Generalized Number Field Sieve.

In this section we want to present Lenstra’s Elliptic Curve Method. The main

references for this subsection are [Len86] and [Len87]. Since Lenstra’s method is a

generalization of Pollard’s (p−1)-Method, we first want to explain Pollard’s method.

The Pollard (p−1)-Method (See for example [Len86, p. 103f], [MvOV96, pp. 92–

93, Section 3.2.3] or [Ros05].)

Let n > 1 be a composite integer.

(a) Pick an a ∈ Z∗
n.

(b) Select an integer k > 0, which is divisible by many small prime powers.

(c) Evaluate ak = ak mod n.

(d) Compute gcd(ak − 1, n).

(e) If the computation gives no factor, repeat the algorithm.

But how to choose k? Lenstra gives k = lcm{1, . . . , w} for a suitable bound w

as an example [Len86, p. 103]. Another method would be to fix a bound B > 0, to

take the set PB of primes less or equal than B, and to define

k =
∏

p∈PB

p

j

log n
log p

k

,

as suggested in [MvOV96, p. 92] and [Ros05].

To see why this method works, assume p is a prime factor of n such that p − 1

divides k, but p does not divide a (i. e. a ∈ Z∗
p). Then ak ≡ 1 (mod p) since

∣∣Z∗
p

∣∣ =

p − 1; therefore, p divides gcd(ak − 1, n). If now n does not divides gcd(ak − 1, n),

we have found a factor. If there is another prime factor q of n such that q − 1 does

not divide k, then ak 6≡ 1 (mod q) and, hence, q does not divide ak − 1. Therefore

192



5.1.2. Factoring Integers

with a high probability, this gives a factor. If k is chosen as suggested in [MvOV96]

and [Ros05], then p− 1 divides k if, and only if, it is B-smooth.

Another way to understand this method is by the Chinese Remainder Theorem.

We have

Z∗
n =

∏̀

i=1

Z∗
p

ei
i
, where n =

∏̀

i=1

pei
i with distinct primes pi.

Now assume pi − 1 is k-smooth for some i; then ak mod pei
i lies in the kernel of

the reduction map Z∗
p

ei
i

→ Z∗
pi

and, therefore, ak − 1 is divisible by pi. Now assume

pj − 1 is not k-smooth for some j; then ak mod p
ej

j does not lie in the kernel of the

reduction map Z∗
p

ej
j

→ Z∗
pj

and, therefore, ak − 1 is not divisible by pj . If there is

such a pair (i, j), we hence have that

gcd(ak − 1, n) =
∏̀

m=1

gcd(ak − 1, pem
m )

is divisible by pi and not by pj . Therefore 1 < gcd(ak − 1, n) < n and, thus,

gcd(ak − 1, n) is a non-trivial factor of n.

Unfortunately, this method relies on the fact that p − 1 has no large prime

factors for one prime factor p of n. And even more unfortunately, the chances of

this happening for a random p is rather low according to [Ros05], as one can deduce

from Theorem 5.1.2.

Lenstra’s Elliptic Curve Method Let n ∈ N be a composite integer, and let

n =
k∏

i=1

pei
i

be the factorization of n, where p1, . . . , pk are distinct primes greater than 3, and

e1, . . . , ek are positive integers.

Restricting to primes p > 3 is not a problem, since the prime factors 2 and 3 can

be found very easily by trial division. In fact, one could also allow prime factors of

2 or 3, but in this case one has to use a more general form for the elliptic curve.

Choose a random pair (a, b) ∈ Zn. If E = Ec with c = (0, 0, 0, a, b) defines an

elliptic curve over Zn, we already know that

Ec(Zn) =
k∏

i=1

Ec(Zpei
i

)

and

|Ec(Zn)| =
k∏

i=1

∣∣∣Ec mod p
ei
i

(Zpei
i

)
∣∣∣ =

k∏

i=1

pei−1
i |Ec mod pi(Zpi)|

by Proposition 4.3.10 and Corollary 4.3.14. If we have chosen a pair (a, b) that does

not define an elliptic curve, the discriminant is either 0 in Zn or a non-zero non-unit,

and hence gives a factor of n.

Next, one randomly picks a point (α : β : 1) ∈ E(Zn). (One could also randomly

choose a, α, β and then choose b such that P ∈ E(0,0,0,a,b)(Zn), and then check
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whether ∆(0,0,0,a,b) ∈ Z∗
n. Since computing square roots in Zn is a hard problem,

this is the preferred way to pick Ea and P .)

Now let ϕi : Ec(Zn) → Ec mod pi(Zpi) be the canonical reductions of the elliptic

curve, and let Pi := ϕi(P ) and `i := ordEc(Zpi )
Pi. Assume that `i is B-smooth for

some bound B > 0, and `j is not B-smooth. If

k =
∏

p∈PB

p

j

log n
log p

k

, where PB = {p | p prime, p ≤ B};

then kPi = ∞ while kPj 6= ∞. Thus, if kP = (x : y : z) ∈ P2(Zn), then z 6≡ 0

(mod pj) while z ≡ 0 (mod pi), i. e. gcd(n, z) gives a factor of n since it is divisible

by pi but not by pj .

Note that while computing kP in Ec(Zn), one can use inhomogenous coordinates

and treat Zn as a field, until at one point one wants to divide by a non-unit. If B

and k are chosen as above, this will happen since at this point the result of the

addition in the curve over Zpi is ∞, while the result of the addition in the curve

over Zpj is not ∞.

One possible way to speed this up is to compute kP iteratively, by evaluating

the product for k iteratively.

The algorithm now does these computations for several pairs (Ec, P ). Since the

`i vary in the interval [pi + 1 − 2
√
pi, pi + 1 + 2

√
pi], there is a chance that for one

pair, one `i is B-smooth while another is not, and hence one gets a factor.

As this is a special case of the algorithm presented and discussed in Section 5.1.4,

we do not analyze the running time here and simply state the result from [Len87],

which uses a conjecture about the distribution of numbers which are B-smooth (see

also Section 5.1.4). The result states that if p is the smallest prime factor of n, and

h the number of tries, then a non-trivial factor of n can be found with probability

at least 1 − e−h in at most

O
(
h · e

√
(2+o(1))·log p·log log p · (log n)2

)

expected bit operations.

5.1.3 Factoring Integers and Counting Points

As already mentioned there is a close connection between factoring an integer n and

counting points of an elliptic curve over Zn. According to [MMV01] and [KK98],

counting the points of an elliptic curve over Zn is randomly polynomial time equiv-

alent to factoring n.

Clearly, if the factorization of n is known, one can reduce with the Chinese

Remainder Theorem and Corollary 4.3.14 to the case of counting points of an elliptic

curve over a finite field, and we have deterministic polynomial time algorithms for

counting points of curves over fields (see Section 4.2.9 for Schoof’s algorithm). Since

the number of prime factors of n is bounded by log2 n, counting points of a curve

over Zn can be done in deterministic polynomial time if the factorization of n is

known.

For the converse we want to give the algorithm from [KK98, Proof of Theo-

rem 1]. Given is a composite square-free integer n, and assume it is coprime to 6.

The output is a non-trivial factor of n. Assume that we are given an oracle that

computes |Ea(Zn)| for an elliptic curve Ea/Zn.
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(1) Choose S to be the largest prime less than blog nc.

(2) Choose a random point P = (x : y : 1) ∈ P2(Zn) and a random a ∈ Zn.

(3) Compute b = y2 − x3 − ax ∈ Zn, i. e. a b such that P ∈ E(0,0,0,a,b)(Zn).

(4) If ∆(0,0,0,a,b) 6∈ Z∗
n, either a non-trivial factor is found or the discriminant is zero.

In the second case continue with step (2).

(5) Compute
∣∣E(0,0,0,a,b)(Zn)

∣∣.

(6) If S does not divide
∣∣E(0,0,0,a,b)(Zn)

∣∣ or if S2 divides
∣∣E(0,0,0,a,b)(Zn)

∣∣, go to

step (2).

(7) Let m =
|E(0,0,0,a,b)(Zn)|

S ∈ Z.

(8) Try to compute mP . If ComputePrimitiveCombination has to do a recursion,

or if the z-coordinate of the resulting point is neither zero nor coprime to n, a

non-trivial factor is found.

(9) Go to step (2).

By [KK98, Proof of Theorem 1] the expected running time is O(log5 n). The result

can be strengthened in the sense that if a multiple of
∣∣E(0,0,0,a,b)(Zn)

∣∣ is known, then

n can be factored in randomly polynomial time. For details see [KK98, Lemma 1].

Before we close this subsection we want to explain why this algorithm works.

Assume n =
∏k
i=1 pi with primes pi. Let c = (0, 0, 0, a, b) and P ∈ Ec(Zn). Now

|Ec(Zn)| =
∏k
i=1 |Ec(Zpi)| and, hence, if S is a prime dividing |Ec(Zn)| only once,

for exactly one i we have that S divides |Ec(Zpi)|. Thus, for all j 6= i we have
|Ec(Zn)|

S P = ∞ ∈ Ec(Zpj ) but in Ec(Zpi) it can happen that |Ec(Zn)|
S P 6= ∞ ∈ Ec(Zpi)

and, therefore, we may find a factor. For an explanation why this second case can

happen, and how good the chances are that step (7) is reached, we need results on

how the number of points of a random elliptic curve over Zp are distributed in the

interval [p+ 1− 2
√
p, p+ 1 + 2

√
p]. This can be found, for example, in [Len87], and

lower bounds can be found with some of the tools in the Sections 4.2.7 and 5.1.4.

5.1.4 Factoring Rings

Let R be a finite ring. By the structure theorem for Artinian rings, Corollary 2.2.20,

we know that R can be written as a finite product of local Artinian rings. But we

do not know yet an effective way how to compute this decomposition. In fact, since

factoring an integer n is the same as decomposing the ring Zn, this problem is at

least as hard as factoring integers.

We have seen in Section 2.4 that as soon as the algorithm ComputePrimitive-

Combination does a recursion, it in fact decomposes the ring into two factors. (A

numerical example of this can be found in Section 4.3.5.) Therefore, we can try

to do arithmetic on random elliptic curves over R, as in Section 5.1.2, in the hope

that this will lead to a factorization. It turns out that indeed this method works

for arbitrary finite rings and, in fact, the same runtime estimate can be set up as in

Section 5.1.2.
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We have seen that factoring rings is equal to finding non-trivial idempotents in

the ring (for example see Proposition 2.2.2). Therefore, our algorithm will have

as input an arbitrary finite ring R and will output—if successful—a non-trivial

idempotent e ∈ R.

If 2 or 3 is non-zero in R but not a unit, then, by the method from the algo-

rithm ComputePrimitiveCombination, one can split R into two rings R1 and R2

such that 2 or 3, respectively, is nilpotent in one, and a unit in the other. Therefore,

we can assume without loss of generality that in R we either have that 2 or 3 is

a unit, or that it is nilpotent. In the case 2 or 3 is nilpotent, the characteristic of

R is a power of 2 or 3, respectively. (The exact characteristic can then be found

by consecutive squaring in at most log2 |R| or log3 |R| steps, respectively, but this

result is not needed here.)

Selecting a Random Elliptic Curve Before describing the algorithm in detail,

we want to inspect the process of randomly choosing an elliptic curve Ea/R and

a point (x : y : 1) = P ∈ Ea(R) more closely. By first choosing a1, . . . , a4, x, y

randomly and then computing a6 such that P ∈ Ea(R), the problem of finding

one point on the curve is solved. (Note that in general, the problem of finding

a point on an elliptic curve over a ring is hard.) In the case 6 ∈ R∗ we can set

a1 = a2 = a3 = 0, and if 3 ∈ R∗, we can set a1 = a3 = 0 without loss of generality

(see Proposition 4.2.8). Next, one can compute j(Ea) and ∆a. If ∆a is a non-unit,

one either finds a non-trivial idempotent if ∆a is not nilpotent or, for some rings

such as Zn, one can still factor if ∆a is a non-zero nilpotent element. Otherwise,

one should choose another curve. If ∆a ∈ R∗ one can check whether j(Ea) ∈
R∗. In that case, one can try to transform the curve into one of the forms, as in

Proposition 4.2.8 (c) and (e). This has the advantage that more coefficients are zero

(which simplifies the addition formulae) or some coefficients are non-units, in which

case one can again try to find factors. If j(Ea) is a non-nilpotent non-unit one can

again factor R; and if j(Ea) is nilpotent, one can transform the curve into one of

the forms as in Proposition 4.2.8 (b) and (d), with the same benefits as above.

Note that selecting random coefficients a1, . . . , a4, a6 ∈ Fq whose discriminant

is 6= 0 is roughly equivalent to choosing a random isomorphism class of elliptic

curves over Fq, since every curve E given by Weierstraß coefficients, is by Proposi-

tion 4.2.4 (1), isomorphic to exactly (q−1)q3

|AutE| other such curves, and the number of

possibilities for Aut(E) is restricted by Proposition 4.2.57 to a number between 2

and 24 in the general case, or between 2 and 6 if 6 ∈ R∗, and in most cases it is 2.

The Algorithm The algorithm works as follows: first one chooses an elliptic

curve Ea/R and a point P ∈ Ea(R) as described above. If the ring can be factored

nothing more need be done. Otherwise, compute `P , where ` is a large integer

that is the product of ‘enough’ small primes. (We will spend more detail on `

later.) Nothing more need be done if, during the computation of `P , the situation

occurs that ComputePrimitiveCombination factors the ring. If `P can be computed

without finding a non-trivial idempotent, one restarts the algorithm.

Assume that m1 and m2 are distinct maximal ideals in R. Denote the natural

maps Ea(R) → Ea(R/mi) with ϕi, and define Pi := ϕi(P ) and `i := ordEa(R/mi) Pi.

If now `1 divides `, but `2 does not, then `P1 = ∞ ∈ Ea(R/m1), while `P2 6=
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∞ ∈ Ea(R/m2). If one looks at the projective coordinates of `P , we see that the

z-coordinate lies in m1 but not in m2. But then the z-coordinate is a non-nilpotent

non-unit in R, and therefore leads to a non-trivial idempotent. (Of course, if the x-

or y-coordinate is in m1 but not in m2, or the other way around, we can also factor.)

Selection of ` Therefore, our aim is to choose ` such that the probability that

the situation above happens is maximized. An example how to choose ` is to fix a

“smoothness bound” B ∈ N as in Section 5.1.2, and then set

` =
∏

p∈PB

pblogp(v+1+2·√v)c

where PB = {p ∈ N | p ≤ B, p prime} and v ∈ Z is an upper boundary for the

smallest value of |R/m|, where m is a maximal ideal of R. For example, one could

choose v =
√
|R|. Since ordPi divides |Ea(R/mi)| by Lagrange, and by Hasse’s

Theorem 4.2.43 we have |Ea(R/mi)| ≤ |R/mi| + 1 + 2
√
|R/mi|, this factor ` will

annihilate every P ∈ Ea(R/mi) if, and only if, |Ea(R/mi)| is B-smooth. Since

R is assumed not to be local, the smallest residue field R/m can have at most√
|R| elements.

A Useful Notation In the remainder of this subsection we extensively make use

of the fact that if (a1, . . . , a4, x, y) ∈ R6 is given, there exists a unique a6 ∈ R such

that with a = (a1, . . . , a4, a6) the point P = (x : y : 1) satisfies the Weierstraß

equation with the coefficient vector a. If given a tuple (a1, . . . , a4, x, y) ∈ R6, we

write (a, P ) = (a1, . . . , a4, x, y) when we mean that a and P should be chosen this

way. If we speak of a valid tuple (a1, . . . , a4, x, y), we mean that the discriminant

associated with the Weierstraß equation is a unit.

Running Time Analysis Unfortunately, the proof by Lenstra in [Len87] has to

be modified at several points, since it relies on the fact that for any maximal ideal m

of R, we have that R/m ∼= Zp for a prime p. Lenstra shows that there exists a

universal effectively computable constant c > 0 such that for any ring R, the number

of the valid tuples (a1, . . . , a4, x, y) ∈ R as above, for which the algorithm finds a

factor, is at least |R|6 c
log p · u−2

2d√pe+1 , where p = min{|R/m| | m maximal ideal of R}
is prime and

u =
∣∣∣
{
s ∈ Z |s− (p+ 1)| ≤ √

p, s is B-smooth
}∣∣∣ .

This result is based on two other results:

(1) [Len87, p. 662, Proposition 1.16 (a)] There exists a universal effectively com-

putable constant c1 > 0 such that given a prime p > 3, and a set S ⊆ Z with

|s− p− 1| ≤ √
p for all s ∈ S, the number of valid tuples (a1, . . . , a4, x, y) ∈ Z6

p

as above, satisfying |Ea(Zp)| ∈ S, is at least c1(|S| − 2) p
5/2

log p .

(2) [Len87, p. 662, Proposition 1.16 (b)] There exists a universal effectively com-

putable constant c2 > 0 such that given two primes p > 3 and `, the number

of valid tuples (a1, . . . , a4, x, y) ∈ Z6
p as above, satisfying that ` does not divide

|Ea(Zp)|, is at least c2p
3.
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For the case that q = pn is a power of an arbitrary prime p, there are examples for

both (1) and (2) that show that one cannot change Zp into Fq and p into q in the

formulae, which would be required to generalize Lenstra’s result for general finite

rings:

(1) Let q = 2n and S = {s ∈ 2Z + 1 | |s− (q + 1)| ≤ √
q}. By Theorem 4.2.46 all

elliptic curves E over Fq satisfying |E(Fq)| ∈ S are supersingular.

(2) In the case q = 2n and ` = 2, all elliptic curves E over Fq that satisfy that 2

does not divide |E(Fq)| are supersingular by Theorem 4.2.46.

In the case q = 2n, by Theorem 4.2.52 the number of non-isomorphic supersingular

curves over Fq are:

(a) if n is even, i. e. q is a square, there are 4 non-isomorphic supersingular curves;

or

(b) if n is odd, i. e. q is not a square, there are 3 non-isomorphic supersingular curves

(see [Sch87, p. 208, Table 1] for the value of H(−8)).

In any case, these numbers are neither growing with |S| nor with q or log q. But

during the running time analysis, the set S is the set of integers in [q + 1 − √
q, q +

1 +
√
q] that are B-smooth for a large enough B, and for this set it turns out that

a similar result can be stated. And the second problem turns out to only occur in

such a drastic way if p = ` = 2.

Lemma 5.1.3. Let ` and p be primes, and q = pn. Assume that not both p and `

are 2.

Let S be the set of integers s ∈ [q + 1 − √
q, q + 1 +

√
q], such that p does not

divide t = q + 1 − s and ` does not divide s. Then

|S| ≥





(2
√
q − 1)p−2

p − 2 if p = ` 6= 2,

(2
√
q − 1)p`−p−`+1

p` − 3 if p 6= `.

In any case |S| ≥ 2
√
q−10
3 .

Proof. Define I := [q+1−√
q, q+1+

√
q]∩Z. Let Sp := {s ∈ I | p divides q+1−s}

and S` := {s ∈ I | ` divides s}. We are interested in the value

N = |I \ (Sp ∪ S`)| = |I| − |Sp ∪ S`| = |I| − |Sp| − |S`| + |Sp ∩ S`| .

Clearly ⌊
|I|
p

⌋
+ 1 ≥ |Sp| and

⌊
|I|
`

⌋
+ 1 ≥ |S`| .

Moreover, |I| = 2
⌊√

q
⌋

+ 1 ≥ 2(
√
q − 1) + 1 = 2

√
q − 1. If p = `, then Sp ∩ S` = ∅,

since q + 1 ≡ 1 (mod p). Hence, we have

N ≥ |I| −
(⌊

|I|
p

⌋
+ 1
)
−
(⌊

|I|
`

⌋
+ 1
)

= |I| −
⌊
|I|
p

⌋
−
⌊
|I|
`

⌋
− 2

≥ |I|
(
1 − 1

p − 1
`

)
− 2 = |I|

(
1 − 2

p

)
− 2.
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If p 6= `, then s ∈ S` if, and only if, s ≡ 0 (mod `), and s ∈ Sp if, and only if, s ≡ 1

(mod p). Since ` and p are coprime, s ∈ S` ∩ Sp if, and only if, s ≡ λ (mod p`) for

a λ = λ(p, `) ∈ Z. Therefore |Sp ∩ S`| ≥
⌊
|I|
p`

⌋
and we have

N ≥ |I| −
(⌊

|I|
p

⌋
+ 1
)
−
(⌊

|I|
`

⌋
+ 1
)

+
⌊
|I|
p`

⌋

= |I| −
⌊
|I|
p

⌋
−
⌊
|I|
`

⌋
+
⌊
|I|
p`

⌋
− 2

≥ |I|
(
1 − 1

p − 1
` + 1

p`

)
− 3.

For the last inequality, note that 1− 1
p − 1

` + 1
p` for distinct primes p, ` ≥ 2 takes the

minimum for {p, `} = {2, 3}, and the minimum value is 1/3. Moreover, p−2
p ≥ 1

3 for

p > 2.

Lemma 5.1.4. There exists an effectively computable constant c > 0 such that the

following holds:

Let Fq be a finite field with q = pn elements, where p is prime. Let S ⊆ Z be a

subset such that for every s ∈ S we have that p does not divide q + 1 − s, and that

|q + 1 − s| ≤ √
q. Denote with Nq,S the number of pairs (a, P ) = (a1, . . . , a4, x, y) ∈

F6
q with the property that Ea/Fq is an elliptic curve and |Ea(Fq)| ∈ S. Then

Nq,S ≥ c(|S| − 2)
q11/2

log q
.

Proof. We first inspect the number N ′
q,S , which we define to be the number of non-

isomorphic elliptic curves E over Fq such that |E(Fq)| ∈ S. For this we are following

[Len87, p. 657, Proof of Proposition 1.9 (b)]. Note that N ′
q,S =

∑
s∈S H((q + 1 −

s)2 − 4q) by Theorem 4.2.52. By applying Proposition 4.2.54 with z = 4q, we

get a universal effectively computable constant c′ > 0 and a ∆∗ < 4 such that

H(∆) ≥ c′
√
−∆

log(4q) for all −4q ≤ ∆ < 0, ∆0 6= ∆∗ satisfying ∆ ≡ 0 (mod 4) or ∆ ≡ 1

(mod 4). Hence, if ((q + 1 − s)2 − 4q)0 6= ∆∗, we have

H((q + 1 − s)2 − 4q) ≥ c′
√

4q − (q + 1 − s)2

log(4q)
.

Now
∣∣(q + 1 − s)2 − 4q

∣∣ ≥ 3q for s ∈ S since (q + 1 − s)2 ≤ q and, thus, H((q + 1 −
s)2 − 4q) ≥ c′

√
3q

log(4q) for ((q + 1 − s)2 − 4q)0 6= ∆∗.

We next show that we have ∆(s)0 = ∆∗ for at most two s ∈ S, where ∆(s) =

q + 1 − s. Assume ∆ = t2 − 4q with t := q + 1 − s and ∆0 = ∆∗ for an s ∈ S.

Consider the quadratic number field K = Q(
√

∆) = Q(
√

∆∗) ⊆ C and its ring of

algebraic integers A. By [Coh96, pp. 185f] A is a Dedekind ring and, therefore,

every ideal can be written as a unique product of prime ideals [Coh96, p. 186,

Theorem 4.6.14 (3)]. Consider the polynomial x2 − tx+ q ∈ Z[x]. It clearly has its

roots in K and, therefore, in A. Denote them by α and ᾱ and note that they are

complex conjugates as the coefficients of the polynomial are real. We have α+ ᾱ = t

and αᾱ = q = pn. Now we have ∆ ≡ t2 (mod p), and since p does not divide t we

get
(

∆∗
p

)
=
(

∆
p

)
= 1. Hence, by [Coh96, p. 224, Proposition 5.1.4 (3)] we have

that 〈p〉 = p1p2 for two prime ideals p1 and p2 in A. Therefore, we have 〈α〉 = pi1p
j
2

and 〈ᾱ〉 = pn−i1 p
n−j
2 for i, j ∈ {0, . . . , n}. If 0 < i, j < n, then 〈p〉 = p1p2 divides

both the ideals 〈α〉 and 〈ᾱ〉, which implies that p divides α and α′ and therefore also
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t = α + α′, which is a contradiction. Therefore, at least one of i and j is in {0, n}.
Now p1 and p2 are also complex conjugates as one can see in the representation in

[Coh96, p. 224, Proposition 5.1.4 (3)] and, thus,

pi1p
j
2 = 〈α〉 = 〈ᾱ〉 = pn−i1 p

n−j
2 = pn−i2 p

n−j
1 ,

and hence i+ j = n. Therefore, {〈α〉 , 〈ᾱ〉} = {pn1 , pn2}. As A∗ = {1,−1} by [Coh96,

p. 231, Proposition 5.3.1] and t = α + ᾱ, we see that t is determined up to sign by

p1 and p2. Since p1 and p2 only depend on K and p, and K only depends on ∆∗,

we can conclude that there are at most two exceptional s ∈ S. Therefore, we have

shown

N ′
q,S ≥ ĉ(|S| − 2)

√
q

log q

for some effectively computable constant ĉ > 0.

For the last part we follow [Len87, pp. 662f, Proof of Proposition 1.16 (a)]. By

Proposition 4.2.4 (a) every elliptic curve given by a vector (a1, . . . , a4, a6) is over Fq
isomorphic to (q−1)q3

|AutFq E(a1,...,a4,a6)| such pairs. Recall that Eq denotes the set of iso-

morphism classes of elliptic curves over Fq. Then we have (using Proposition 4.2.57)

Nq,S =
∑

[E]∈Eq

|E(Fq)|∈S

(q − 1)q3(|E(Fq)| − 1)∣∣AutFq E
∣∣

≥ (q −√
q)(q − 1)q3

∑

E∈Eq

|E(Fq)|∈S

1∣∣AutFq E
∣∣

≥ (q −√
q)(q − 1)q3 1

24

∑

E∈Eq

|E(Fq)|∈S

1

= (q −√
q)(q − 1)q3 1

24
N ′
q,S

≥ ĉ

24
(|S| − 2)

(q −√
q)(q − 1)q7/2

log q
.

Now (q − √
q)(q − 1) ≥ c̃q2 for some c̃ > 0 and all q ≥ 2 and, therefore, the claim

follows.

In the case of characteristic 2 we need a result to establish an upper boundary

for the number of cases in which p = ` = 2 occurs.

Lemma 5.1.5.

(a) There are at most two elements in the interval [q+ 1−√
q, q+ 1 +

√
q] that are

a power of 2.

(b) Let G be a finite Abelian group whose order is not a power of two. Then at least
1
3 |G| of the elements do not have an order that is a power of two.

Proof.

(a) The number is at most

blog2(q + 1 +
√
q)c − dlog2(q + 1 −√

q)e + 1

≤ log2(q + 1 +
√
q) − log2(q + 1 −√

q) + 1

= log2

(
1 +

2√
q + 1/

√
q − 1

)
+ 1 < log2(4) + 1 = 3.
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The inequality 2√
q+1/

√
q−1 < 3 follows from an elementary discussion of the

maxima of the function on the left.

(b) By the Structure Theorem for Abelian Groups and the Chinese Remainder The-

orem for integers (Proposition 2.5.6) we can writeG = Zpn×G′ for a prime p > 2,

n ∈ N>0 and an Abelian group G′. Now all elements in Zpn have as an order a

power of p, and only the identity has order one. Therefore, the elements of G

whose order is not a power of two is at least (pn − 1) |G′|. Now |G′| = |G|
pn and,

hence, the number is at least (1− 1
pn ) |G|. We can conclude since 1

pn is maximal

for pn = 3.

Corollary 5.1.6. There exists an effectively computable constant c > 0 such that

the following holds:

Let R be any finite ring and v, B and ` be as above. Let N denote the number of

tuples (a, P ) = (a1, a2, a3, a4, x, y) ∈ R6 such that Ea/R is an elliptic curve and the

algorithm described above finds an idempotent element in one round with the given

choices of Ea/R and P ∈ Ea(R).

Let m be a maximal ideal of R such that R/m is minimal; thus, in particular v ≥
|R/m| = pn, where p is prime. Denote with u the cardinality of the set

{
s ∈ Z

|s− |R/m| − 1| ≤
√
|R/m|,

s is B-smooth, p - (s− |R/m| − 1)

}
.

Then
N

|R|6
≥ c

u− 4

(2b
√
|R/m|c + 1) · log |R/m|

.

Proof. Assume that Ea/R is such a curve, P ∈ Ea(R), and m′ is another maximal

ideal of R. Furthermore, assume that |Ea(R/m)| is B-smooth, but |Ea(R/m′)| is

not divisible by the largest prime factor of ordEa(R/m) P . Then, the algorithm will

find a non-trivial idempotent of R. (For this also see [Len87, p. 667, Proof of

Proposition 2.6].)

We want to use this to find a lower boundary for N . Denote with Ts the set of

tuples (a, P ) = (a1, . . . , a4, x, y) ∈ (R/m)6 such that Ea/(R/m) is an elliptic curve

and |Ea(R/m)| = s.

For every such a and P define `a,P to be the largest prime factor of ordEa(R/m) P ,

and define Ua,P as the set of tuples (a′, P ′) = (a′1, . . . , a
′
4, x

′, y′) ∈ (R/m′)5 such that

Ea′/(R/m
′) is an elliptic curve and |Ea′(R/m′)| is not divisible by `a,P .

In the case that the characteristic of R/m′ is 2, exclude all tuples (a, P ) =

(a1, . . . , a4, x, y) ∈ Ts for whom `a,P = 2.

Let Va,P,a′,P ′ denote the set of all (a′′1, . . . , a
′′
4, x

′′, y′′) ∈ R6, which by reduc-

tion modulo m is equal to (a1, . . . , a4, x, y), and by reduction modulo m′ is equal to

(a′1, . . . , a
′
4, x

′, y′). SinceR is finite and m and m′ are distinct maximal ideals, the Chi-

nese Remainder Theorem (Theorem 2.0.3) gives
∣∣Va,P,a′,P ′

∣∣ = |R|6
(|R/m||R/m′|)6 . More-

over, let SB be the set of B-smooth integers such that p does not divide |R/m|+1−s
for all s ∈ SB.

(Note that where we have a tuple (a′′, P ′′) = (a′′1, . . . , a
′′
4, x

′′, y′′) such that ∆a′′

is not a unit in R, then it is also not nilpotent and, therefore, we found a factor.

Hence, we can simply neglect this case.)
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Then, by the remark at the beginning of the proof, we get the inequality

N ≥
∑

s∈SB

∑

(a,P )∈Ts

∑

(a′,P ′)∈Ua,P

∣∣Va,P,a′,P ′
∣∣

≥
∑

s∈SB
|s−|R/m|−1|≤

√
|R/m|

∑

(a,P )∈Ts

|Ua,P |
|R|6

(|R/m| |R/m′|)6 .

First, assume |R/m′| ≥ 68. By Lemma 5.1.3 and Lemma 5.1.4 we get

|Ua,P | ≥ c
(

2
3

√
|R/m′| − 16

3

) |R/m′|11/2
log |R/m′|

for the universal, effectively computable constant c in Lemma 5.1.4. Now 2
3

√
|R/m′|−

16
3 ≥ 1

64

√
|R/m′| if |R/m′| ≥ 68. Hence, we get

|Ua,P | ≥
c

7

|R/m′|6
log |R/m′| ≥

c

7
1

log 2

∣∣R/m′∣∣6 .

If |R/m′| ≤ 67, for every prime ` there is at least one elliptic curve E over R/m′

satisfying ` - |E(R/m′)| (this follows from Theorem 4.2.46 and Examples 4.2.47), and

since these are finitely many cases there exists a universal, effectively computable

constant ĉ > 0 such that

|Ua,P | ≥ ĉ
∣∣R/m′∣∣6

for any residue field R/m′. Together we get

N

|R|6
≥

∑

s∈SB
|s−|R/m|−1|≤

√
|R/m|

∑

(a,P )∈Ts

ĉ
∣∣R/m′∣∣6 1

(|R/m| |R/m′|)6

=
∑

s∈SB
|s−|R/m|−1|≤

√
|R/m|

∑

(a,P )∈Ts

ĉ

|R/m|6

=
ĉ

|R/m|6
∑

s∈SB
|s−|R/m|−1|≤

√
|R/m|

|Ts| .

First, assume that the characteristic of R/m′ is > 2. By Lemma 5.1.4 (note that

|Ts| = Nq,{s}) we get

N

|R|6
≥ cĉ

1

|R/m|6
(u− 2)

|R/m|11/2
log |R/m| = cĉ

(u− 2)√
|R/m| log |R/m|

.

Now assume that the characteristic of R/m′ is 2. By Lemma 5.1.5 (b) we see

N

|R|6
≥ ĉ

1

|R/m|6
∑

s∈SB\{2k|k∈N}
|s−|R/m|−1|≤

√
|R/m|

1

3
Nq,{s},

with Nq,{s} as in Lemma 5.1.4 and, using the Lemmas 5.1.4 and 5.1.5 (a), we get

N

|R|6
≥ cĉ

1

3 |R/m|6
(u− 4)

|R/m|11/2
log |R/m| =

cĉ

3
· u− 4√

|R/m| log |R/m|
.
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As a last step, note that

1√
|R/m|

≥ c̃
1

2
⌊√

|R/m|
⌋

+ 1

for some universal constant c̃. By taking the constant c from the claim as the

maximum of the constants for both the cases of the characteristic of R/m′, multiplied

by c̃, we can conclude.

Unfortunately, we now need a conjecture to reach the same estimate as in [Len87]:

Conjecture 5.1.7. Let q = pn be a power of the prime p, where n > 1, and S be the

set of all B-smooth integers in the interval [q + 1 −√
q, q + 1 +

√
q], where B > 11.

Define

S′ = {s ∈ S | p does not divides q + 1 − s},
and assume |S| > 1. Then |S ′| ≥ 2

5 |S|.

Note that computer experiments have shown that for q ≤ 1 000 000 this conjec-

ture holds. In fact, it also holds for B ≤ 5 and q = p as soon as |S| > 1. The constant
2
5 appears to be the lowest boundary for this conjecture to work; it is attained, for

example, if q = 4 or q = 8. If p > 2 one can chose 1
2 and, in general for larger p, the

constant can be chosen much nearer to 1. This is why I believe the conjecture will

hold with the stated assumptions.

We have collected enough to prove an analogon to Corollary 2.8 in [Len87, p. 669]:

Corollary 5.1.8. There exists an effectively computable constant c > 1 with the

following property.

Let R be a finite ring which is not local, m be a maximal ideal of R such that

|R/m| is minimal, and v > 1 be an integer such that v ≥ |R/m|. Choose B > 1 such

that

u :=
∣∣∣
{
s ∈ Z |s− |R/m| − 1| ≤

√
|R/m|, s is B-smooth

}∣∣∣
is at least 11. Let f(B) = u

2
⌊√

|R/m|
⌋
+1

denote the probability that a random integer

in the interval [
|R/m| + 1 −

√
|R/m|, |R/m| + 1 +

√
|R/m|

]

is B-smooth. Then for any h > 1 the success probability for the above algorithm,

with h different choices for the curve and point, is at least

1 − c
−h f(B)

3 log v .

Proof. With Corollary 5.1.6 and Conjecture 5.1.7 we get (withN as in the Corollary)

N

|R|6
≥ c′

2
5u− 4(

2
⌊√

|R/m|
⌋

+ 1
)
· log |R/m|

≥ c′′
f(B)

log v

for effectively computable universal positive constants c′′ and c′, since u− 10 ≥ 1
11u.

The failure probability for the algorithm with h choices for the curve and point is

(1 −N/ |R|6)h, and

(
1 − N

|R|6
)h

≤ (e−N/|R|6)h = e−hN/|R|6 ≤ e
−hc′′ f(B)

log v ,

such that with c = ec
′′/3 > 1 (since c′′ > 0) we can conclude.
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Define

L : [e,∞[ → R, x 7→ e
√

log x·log log x.

Then, by Theorem 5.1.2, for any x > e we have that the probability for a random

positive integer s ∈ [1, x] to be L(x)a-smooth is L(x)−1/(2a)+o(1) for any positive a ∈
R and for x→ ∞. In the paper [Len87] Lenstra conjectures:

Conjecture 5.1.9 (Lenstra). [Len87, p. 670] Let a > 0 be a real number. Then the

probability that a random positive integer in the interval ]x+ 1 − √
x, x+ 1 +

√
x[ is

L(x)a-smooth is L(x)−1/(2a)+o(1) for x→ ∞.

Assuming this conjecture, we can conclude the estimated running time for the

algorithm as in [Len87, p. 670], where h different choices for curve and point are

used. It turns out that optimal choices for B and h are

B = L(|R/m|)
1√
2
+o(1)

and h ∼ B

f(B)
= L(|R/m|)

√
2+o(1)

for |R/m| → ∞. Since |R/m| is not known before, one can replace it with v and

choose an increasing sequence of values for v. We get the following conjecture for

the running time of this algorithm:

Conjecture 5.1.10. (See [Len87, p. 670, Conjecture 2.10].) Assume that R is

a finite ring that is not local. Let m be a maximal ideal of R such that |R/m| is

minimal. Let h be any positive integer. Then the above algorithm, with h choices

of a curve and point, and with suitable values for B, v and h (see above), returns a

non-trivial idempotent with probability 1 − e−h in time

h ·K(|R/m|) ·M(|R|),

where

K(n) = e
√

(2+o(1))·log n·log logn

and M(n) is the cost for one addition on the elliptic curve over a ring with n

elements. In the case of R = Zn with n coprime to 6, one can choose M(n) =

O((log n)2).

Note that if R = Zn where n is coprime to 6, we can also choose

M(n) = O((log n)(log log n)2(log log log n))

according to [Len87, p. 669, Paragraph 2.9].

Improvements There are several improvements possible for this algorithm. If

one uses curves for which some information about the group structure is known,

one can considerably speed up the algorithm. For example, A. O. L. Atkin and

F. Morain consider in [AM93] a family of curves E such that |E(Fp)| is divisible by

16. A problem is that one might use a family of curves that are limited in some

way, such that the algorithm might not work for some kind of rings. For the case

where R = Zn, Atkin and Morain mention that their experiments [AM93, p. 403,

Paragraph 3.6] have shown that their family of curves seems to work well in practice;

they use a family of curves parameterized by D. S. Kubert.
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There are also many improvements for Lenstra’s original algorithm, like adding

a second phase. Some improvements are described in [Mon87, Section 8 and 9];

references to other improvements can also be found in this paper. More information

about selecting optimal parameters for the case R = Zn can be found in [SW93].

An Unsuccessful Idea for Improving the Elliptic Curve Factorization

Method for Integers In integer factoring one sometimes uses the ring of in-

tegers of number fields instead of Z, for example, Z[
√
p] for some prime p. This

motivates one to look at finite ring extensions of Zn, where n is an integer to be

factored, for example, at Zn[
√
k] = Zn[x]/

〈
x2 − k

〉
if k is not a square in any Zp,

p a prime factor of n. Unfortunately, this is of no help for the Elliptic Curve Fac-

torization Method. Assume n = n1n2 with coprime integers n1 and n2. Then

Zn[
√
k] ∼= Zn1 [

√
k] × Zn2 [

√
k] by the Chinese Remainder Theorem, and Zpn [

√
k],

p a prime and n > 0, is a local ring with residue field Zp[
√
k] = Zp[x]/

〈
x2 − k

〉
,

since x2 − k is irreducible over Zp. Thus, in Zpn [
√
k] the ratio of nilpotents to ring

elements is the same as in Zp[
√
k], which is 1

p2
, compared to 1

p in Zp. Hence, the

ratio of elements that help factoring to ring elements is less in Zn[
√
k] than in Zn.

If one also considers that computations in Zn[
√
k] are more expensive than in Zn,

it is worthless to try to apply the factoring method to Zn[
√
k] instead of Zn itself.

For other extensions of Zn similar results can be shown.

5.1.5 Primary Decomposition

As an application of the algorithm in the last section, we want to show how it can

be used to compute the primary decomposition of a zero-dimensional ideal over Fq.
First, we want to define what a primary decomposition is. See, for example, [Mat80,

pp. 52–57] or [Eis95, pp. 94–113, Chapter 3] for more information on primary de-

composition. In the following let R be a Noetherian ring and M a finitely generated

R-module.

Definition 5.1.11. Let N be a submodule of M .

(a) An R-module P is called co-primary if |AssR(P )| = 1.

(b) We say N is a primary submodule (of M) if M/N is co-primary. If AssR(M/N) =

{p}, we say N is p-primary.

(c) A primary decomposition of N is an equation N =
⋂k
i=1Ni, where the Ni are

primary submodules of M .

(d) A primary decomposition N =
⋂k
i=1Ni is irredundant if N $

⋂k
i=1
i 6=j

Ni for every

j, and if the associated primes of M/Ni are all distinct.

We also need the following characterization for a module being co-primary and

an ideal being primary:

Proposition 5.1.12. [Mat80, pp. 52f, Proposition 8.B] The module M is co-

primary if, and only if, all of the following conditions hold:

(i) we have that M 6= 0; and
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(ii) if x ∈ R is a zero-divisor on M , then for every y ∈ M there exists an n > 0

such that xny = 0.

[Mat80, p. 53, Remark] If M = R and N = a for some ideal a in R, then N is

primary if, and only if, all zero-divisors of R/a are nilpotent.

The following proposition shows that every submodule N of M has a primary

decomposition:

Proposition 5.1.13. [Mat80, p. 56, Corollary and p. 54, Definition 8.D and

Lemma 8.E] Every submodule N of M has an irredundant primary composition.

If N =
⋂k
i=1Ni is such a decomposition, then AssR(M/N) is the disjoint union of

the AssR(M/Ni).

From now on we consider the case M = R = Fq[x1, . . . , xn] and N = a.

Remark 5.1.14. According to [EHV92, pp. 86ff] one can reduce the problem of

finding a primary decomposition of any ideal a in R = F[x1, . . . , xn] to the case

where dimR/a = 0, i. e. to the case where R/a is Artinian.

Therefore, it is enough to concentrate on the case where R/a is Artinian. The

next lemma and its corollary link the primary decomposition of a with the decom-

position of R/a into local Artinian rings:

Lemma 5.1.15. Let R = F[x1, . . . , xn] and a be an ideal in R. Assume R =
⋂k
i=1 bi

is an irredundant primary decomposition of a.

(a) We have that
√

bi is prime for every i. In fact, AssR(R/bi) =
√

bi. If dimR/a =

0, then a is primary if, and only if,
√

a is prime.

(b) If dimR/a = 0, we have that R/a ∼=
∏n
i=1R/bi. The ring R/a is Artinian and

the R/bi’s are local Artinian rings.

(c) Let R/a be an Artinian ring and R/a ∼=
∏m
i=1Ri be the decomposition into local

Artinian rings, and let ci = ker(R/a → Ri). Then a =
⋂m
i=1 ci is an irredundant

primary decomposition of a.

Proof.

(a) By the last statement in Proposition 5.1.12 we see that every zero-divisor of

R/bi is nilpotent. Therefore, the only zero-divisor in R/
√

bi ∼= (R/bi)/(
√

0/bi)

is 0 and, hence,
√

bi is prime.

For the second statement note that R/bi has the minimal prime
√

bi/bi and,

therefore,
√

bi ∈ AssR(R/bi) by Proposition 2.3.37 (a).

The last statement follows from the first and the fact that if
√

a is prime and

dimR/a = 0, then R/a is a local Artinian ring; by Lemma 2.2.21 and the last

statement of Proposition 5.1.12 we therefore get that a is primary in this case.

(b) We have to show bi + bj = R for i 6= j, then we can conclude with the Chinese

Remainder Theorem (Theorem 2.0.3). This is equivalent to
√

bi +
√

bj = R,
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since if a+ b = 1 with an ∈ bi, b
n ∈ bj , we have 1 = (a+ b)2n = ã+ b̃ with ã ∈ bi

and b̃ ∈ bj .

As the primary decomposition is irredundant, the
√

bi’s are pairwise distinct

primes. And as dimR/a = 0, the
√

bi’s are maximal ideals. But then, clearly,√
bi +

√
bj = R for i 6= j.

The last statement is clear by Remarks 2.3.22 (b), by the last statement of

Proposition 5.1.12, and by Lemma 2.2.21.

(c) Clearly, the ci’s are primary by Lemma 2.2.21 and the last statement of Proposi-

tion 5.1.12. Since R/a ∼=
∏m
i=1R/ci it follows that a =

⋂m
i=1 ci is an irredundant

primary decomposition.

Corollary 5.1.16. If R/a is an Artinian ring, any irredundant primary decompo-

sition of a corresponds to the decomposition of R/a into local Artinian rings.

The next lemma shows how to use the algorithm for finding idempotents in Ar-

tinian rings from Section 5.1.4 to find a primary decomposition of a zero-dimensional

ideal a ⊆ F[x1, . . . , xn]:

Lemma 5.1.17. Let e ∈ R be an element such that e2 = e ∈ R/a, and it is e 6= 1 ∈ a

and e 6= 0 ∈ a. Then

a = (a + 〈e〉) ∩ (a + 〈e− 1〉) and R/a ∼= R/(a + 〈e〉) ×R/(a + 〈e− 1〉).

Moreover, if a+ 〈e〉 =
⋂`
i=1 ci and a+ 〈1 − e〉 =

⋂m
i=1 di are primary decompositions,

then a primary decomposition of a is given by a =
⋂`
i=1 ci ∩

⋂m
i=1 di.

Proof. As 1 = e−(e−1) we have (a+〈e〉)+(a+〈e− 1〉) = R and, therefore, the second

statement follows from the first by the Chinese Remainder Theorem (Theorem 2.0.3).

Clearly a ⊆ (a + 〈e〉)∩ (a + 〈e− 1〉). Let f = a+ (e− 1)g ∈ a + 〈e〉, where a ∈ a and

g ∈ R. Since a+eg ∈ a+〈e〉, we get g ∈ a+〈e〉 and, therefore, can write g = a′+eh,

where a′ ∈ a and h ∈ R. But then f = (a+(1−e)a′)+(e2−e)h ∈ a, since e2−e ∈ a

by assumption. The last statement follows from the previous corollary.

Note that one could also prove this lemma by using Lemma 5.1.15 and Proposi-

tion 2.2.2.

This directly leads to a recursive algorithm:

(1) Input is a zero-dimensional ideal a in a ring F[x1, . . . , xn] over a field F.

(2) Find a non-trivial idempotent e ∈ R/a.

(a) If no non-trivial idempotent could be found, return a (which is primary in

this case).

(b) Compute primary decompositions a + 〈e〉 =
⋂
i ci and a + 〈1 − e〉 =

⋂
j dj

by applying this algorithm recursively, and then return
⋂
i ci ∩

⋂
j dj .

Note that F should be a finite field. Otherwise, the algorithm from Section 5.1.4 for

finding non-trivial idempotents is not usable.
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There are two drawbacks:

(a) Note that detecting the case where a is primary is hard, since the algorithm

from Section 5.1.4 cannot prove that there are no non-trivial idempotents.

(b) For computations in R/a a Gröbner basis of a has to be computed, which is cost

intensive. Fortunately, if one wants to compute a Gröbner basis for a + 〈e〉, one

already has a Gröbner basis for a, which simplifies the computation.

An idea would be to give up finding a non-trivial idempotent after some time,

and then either apply another algorithm for primary decomposition in the hope it

produces better results (see for example [EHV92] and [Vas98, Chapters 3 and 4]), or

to simply treat a as a primary ideal and to warn the user that this might be wrong.

For implementation it might be useful not to do this recursively, but using four

lists: todo, done and hard and failed. At startup all are empty, except todo which

only contains a. Then in every iteration step, one ideal b is removed from todo and

one tries to find non-trivial idempotents e in R/b. If this fails after a given time,

the ideal is put onto the hard list; otherwise the ideals b + 〈e〉 and b + 〈1 − e〉 are

put on the todo list. When the todo list is empty but the hard list is not, take

the first ideal from the hard list. Either by applying another algorithm or applying

the idempotent-finding algorithm for a longer time, one tries to split this. If the

outcome is that b is primary, it can be put onto the done; if b can be split, put

the factors onto the todo or done list, depending on whether they are known to be

primary; otherwise put b onto the failed list.

At the end the done list contains the successfully found primary ideals of a

primary decomposition, and the failed list all ideals which may not be primary

yet. In any case, the ideal a is the intersection of all ideals in the done and failed

lists, and if a primary decomposition of all ideals in failed is known, a primary

decomposition of a is given by the intersection of all ideals in done and the primary

ideals from the decompositions of the ideals on the failed list.

We want to close this section with two remarks:

Remarks 5.1.18.

(a) It might be possible to generalize a primality test for integers using elliptic

curves to a test for an ideal being primary or prime. Such a test, combined with

the above algorithm, would result in a much more complete algorithm, which

only has to rely on other algorithms when both the idempotent finding and the

primary/prime checking algorithm do not give any results after several tries.

(b) The algorithm relies on the fact that it is fast to check whether an x ∈ R =

F[x1, . . . , xn]/a is invertible or not, and that it is fast to find a solution to an

equation ax = b for which one knows one solution exists. (See the description

of the algorithm ComputePrimitiveCombination on page 49.)

This can be done, for example, by the methods explained in Section 2.5.2, which

are slow if dimFR is large. But for small dimFR there are other fast algorithms

for primary decomposition (for example, see [Mon02]).
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5.2 Cryptography

Cryptography is the area in cryptology where ciphers are designed; ciphers are algo-

rithms which transform an input message, the plaintext, into an output message, the

ciphertext, which can only be transformed back to the plaintext with the knowledge

of a secret key. One of the very interesting areas of cryptography is the field of

public key cryptography, which is relatively young. The first work in this area was

done around 1976 by W. Diffie and M. Hellman; we will describe some of their ideas

and of others in Section 5.2.1. More information can be found in [MvOV96], [Sin01]

and [Ros05].

The idea to use elliptic curves in cryptography originated with N. Koblitz and

V. Miller in 1985 (see [MvOV96, p. 316]). We will describe the ideas of how to use

elliptic curves (over fields) in Section 5.2.2.

In 1991 K. Koyama, U. M. Maurer, T. Okamoto and S. A. Vanstone invented

a public key scheme using elliptic curves over the ring Zn, where n is the product

of two distinct primes. Their paper started the interest in using elliptic curves over

rings in cryptography, which resulted in several other cryptosystems. We will discuss

the hardness of problems in Section 5.2.3, and in Section 5.2.4 we will present several

cryptographic schemes using elliptic curves over rings, including the one by Koyama

et al.

5.2.1 General Cryptography

In classical cryptography only secret key systems were known and in use; in such

systems, both the sender and the recipient of a message have to fix a secret key

in advance, and both are able to encrypt and decrypt messages with this key. A

different approach is used in public key cryptography, where the sender and the

recipient have different keys, and the key to encrypt can in fact be known to everyone

without being of much help for reconstructing the corresponding secret key. The

main concept on which public key cryptography relies is the concept of a one-way

trapdoor function, which we will describe in the first paragraph, together with how

such a function is used. In the next paragraph we present the concept of a discrete

logarithm problem, which allows the construction of such one-way trapdoor functions,

together with an example. Later we will see how elliptic curves can be used to

construct hard discrete logarithm problems.

One-Way Trapdoor Functions

A one-way trapdoor function is an injective function f : X → Y having the following

properties:

• The image ϕ(x) can be effectively computed for every x ∈ X.

• For almost all y ∈ Y it is almost infeasible to compute x = f−1(y) without

knowing a secret.

• If one knows the secret, one can effectively compute x = f−1(y) for every y ∈
im f .
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There are many applications of one-way trapdoor functions; we describe the two

probably most important ones:

(a) Public Key Cryptography A key consists of a public and a secret part.

The public part is needed for encryption, but is useless for decryption. The

decryption can only be done effectively if the secret part is known.

In fact, this can be directly realized by one-way trapdoor functions: the public

part is the function itself, and the secret part is its secret.

(b) Digital Signatures A digital signature is the analogon to a real signature:

it should ensure that a document is authentic. To attach a digital signature

to a document, one needs to put some information about the document into

the signature. Otherwise the signature could be simply copied into any other

document. This is usually done by placing a hash value of the document into

the signature.

A one-way trapdoor function serves as the public key of the signature, whereas

the secret of the function is used to sign a document: one takes a hash value

of the document, appends a text which identifies oneself, and uses the secret

to generate a value s ∈ X. This signature can be verified by anyone by simply

applying the function to it: if the result is meaningful (i. e. the hash value

belongs to the document, and the appended text is correct), the signature and

the document is authentic.

Discrete Logarithm Problems

Let G be a (multiplicatively written) group. A discrete logarithm problem, abbre-

viated to DLP, consists of two elements x, y ∈ G and the task to find an z ∈ N
such that xz = y. One says that a discrete logarithm problem is hard if it is hard

to compute such a z, and one says that the discrete logarithm problem for the

group G is hard if for most choices of two elements x, y ∈ G, the discrete logarithm

problem (G, x, y) is hard.

If G is a group for which the discrete logarithm problem is hard, it can be used

for doing cryptography. We want to present two applications for such groups:

(a) Key Exchange In 1976 Diffie and Hellman proposed a secret key exchange

based on the hardness of the discrete logarithm problem.

• The setup is a cyclic group G and a generator g ∈ G.

• Both parties pick an exponent e, compute ge, and send this to the other

party.

• Both parties raise the value from the other party to their own exponent;

this new value serves as the secret key.

If a third party was able to collect the gei ’s which were sent around, it is, in

general, not able to compute ge1e2 = (ge1)e2 = (ge2)e1 without solving one of

the two DLPs gx = hi, where hi = gei .
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(b) One-Way Trapdoor Functions In 1985 ElGamal constructed a one-way

trapdoor function based on the discrete logarithm problem.

• The setup is a cyclic group G and a generator g ∈ G.

• The key generator chooses a random a ∈ N and computes h := ga.

• The public information is (G, g, h).

• To encrypt an element m ∈ G, one chooses a random b ∈ N and com-

putes (gb,mhb) ∈ G2.

• To decrypt a pair (g1, g2) ∈ G2, one computes m = g2g
−a
1 .

Since similar constructions are used later, we want to describe the RSA one-way

trapdoor function. Let p and q be two distinct primes and n = pq. Choose e ∈ Z∗
φ(n),

where φ(n) = |Z∗
n| = (p − 1)(q − 1), and compute d = e−1 mod φ(n). Then

there exists a Bézout equation 1 = ed + kφ(n) for some k ∈ Z, and given an

arbitrary x ∈ Zn, one can show that (xe)d = x · xkφ(n) ≡ x (mod n) using the

Chinese Remainder Theorem (Proposition 2.5.6) and Little Fermat’s Theorem.

The public information is now n and e, and d and the factorization n = pq are

the secret. The trapdoor function is m 7→ me mod n.

5.2.2 Elliptic Curves over Fields

The group of points of an elliptic curve over a finite field Fq is obviously finite.

Moreover, the group operation is effectively computable but quite complex compared

to the basic operations in Fq. As it also seems that the discrete logarithm problem

is hard for general curves, the groups of points of elliptic curves are suitable to be

used for constructing discrete logarithm problems as described in Section 5.2.1. The

discrete logarithm problem for elliptic curves is sometimes called the Elliptic Curve

Discrete Logarithm Problem, abbreviated to ECDLP.

Besides this there are noteworthy constructions for elliptic curves, namely the

Weil and the Tate pairing. A pairing is a bilinear map G×G → H for two groups

G and H. For information on the Weil pairing see, for example, [Sil86, pp. 95–99,

Chapter III, Section §8] and [MOV93].

There are both constructive and destructive applications for the pairings: for

example, they can be used for signature schemes with very short signatures, as

described in [BLS04], or to create identity-based encryption schemes, as described

in [BF03]. A destructive use is the MOV Reduction, as described in [MOV93]: it can

be used to reduce the discrete logarithm problem from E[k] to a discrete logarithm

problem in a finite field Fqn , where Fq is the field of definition for the curve and n

an integer depending on k and the curve. For special classes of curves, for example

for supersingular curves, this index is bounded upwards by 6 (see [MOV93, p. 1642,

Table 1]). And if, for example, the trace of Frobenius is 0, this index is at most 2.

Therefore for curves with q + 1 points, the discrete logarithm problem is relatively

easy. For details see [MOV93].

We want to note that pairings can also be defined for a generalized elliptic curve

(see [KM85, pp. 87–91, Section 2.8]). From here on we are no longer interested in

pairings.
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5.2.3 Hardness of Problems over Rings

In this section we will discuss the hardness of two problems for elliptic curves over

rings, namely counting the number of points and solving the discrete logarithm

problem.

Counting the Points

In Section 5.1.3 we saw that in the case where R = Zn, n being a composite square-

free integer, the problem of counting the number of points of an elliptic curve over

R is randomly polynomial time equivalent to factoring n.

Consider the general case, i. e. R is an arbitrary finite ring. If the decomposition

R =
⊕n

i=1Ri into finite local rings is known and, moreover, the reduction R →
Ri/mi can be effectively computed, where mi is the maximal ideal of Ri, then the

points of a curve over R can be counted in deterministic polynomial time using

Schoof’s algorithm.

The same technique as in [KK98] can be used to factor R, given that one has

an oracle that computes |Ec(R)| for an arbitrary elliptic curve Ec over R. Since it

is unlikely to have such an oracle, we will not investigate this problem any further.

For related topics see Sections 5.1.3 and 5.1.4.

The Discrete Logarithm Problem

Consider again R = Zn for a composite square-free integer n. By [KK98, Theorem 3],

if the discrete logarithm problem in any group Ec(Zn) can be solved, then n can be

factored in randomly polynomial time. Moreover, if n can be factored, the discrete

logarithm problem in an arbitrary group Ec(Zn) can be reduced to discrete logarithm

problems in Ec mod p(Zp) for all prime factors p of n. This reduction can be done

in deterministic polynomial time.

Clearly, the second reduction generalizes to elliptic curves over arbitrary finite

rings R =
∏k
i=1Ri: if the reductions R → Ri and Ri → Ri/mi are known and can

be effectively computed, where the mi is the maximal ideal of the local ring Ri, then

the discrete logarithm problem in Ec(R) can be reduced to the discrete logarithm

problems in Ec(Ri). Moreover, to solve the discrete logarithm problems in Ec(Ri),

one can first solve the discrete logarithm problem in Ec mod mi(Ri/mi) and then

exploit the following fact:

If G and H are groups, f : G → H is a group morphism, and ga = h a discrete

logarithm problem in G, one obtains the discrete logarithm problem f(g)a = f(h)

in H. If b ∈ N is a solution for this second problem, then a ≡ b (mod ord f(g)) for

any solution a of the DLP gx = h, and ord f(g) is a divisor of ord g.

Conclusion

Elliptic curves are used in cryptography because with relatively small fields Fq one

can get a good security level, i. e. the DLPs are ‘hard enough’. Using elliptic curves

over large fields Fq with sizes one has to use for RSA is not a good idea, since one

operation on an elliptic curve is costly compared to one in Fq itself.

If now a finite ring R is used that has approximately the same cardinality as

Fq, and R can be effectively decomposed, then the discrete logarithm problem and
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the point counting problem for elliptic curves over R is easier by several magnitudes

than for elliptic curves over Fq.
To prevent this, one has two options:

(a) Use a ringR whose components are large enough such that the discrete logarithm

problem over them is still hard.

But as mentioned this is not a good idea, since adding two points is a complex

operation compared to one multiplication in R, and the advantage of elliptic

curves was that the ground field can be relatively small.

(b) One has to use rings R, which cannot be decomposed. These are, by Corol-

lary 2.2.23, exactly the local rings. Moreover, it must be very hard to effectively

compute R/m, where m is the maximal ideal of R.

As the first option is not really useful, one has to look for finite local rings where

the residue field is hard to compute. We will not investigate this topic any further,

as for the two important classes of finite local rings R we introduced in Section 2.5

computing R/m is relatively easy:

• Rings of the form R = S/ 〈fn〉, where S is an Euclidean domain, f an ir-

reducible element in S and n > 1 an integer. In that case R/m = S/ 〈f〉,
and f can be found from fn by computing roots; in the case of integers or

polynomials over a finite field, this is relatively easy.

• Rings of the form Fq[x1, . . . , xn]/a, where a is a zero-dimensional primary ideal.

In this case R/m = Fq[x1, . . . , xn]/
√

a, and computing
√

a is not too hard; see

[EHV92] and [Vas98, p. 104, Theorem 4.2.3].

Therefore, our conclusion is that using elliptic curves over rings for cryptography

is not useful. This opinion is also expressed in [Gal02] for the case R = Zn.

5.2.4 Existing Schemes over Rings

There have been a few cryptosystems that use elliptic curves over rings. In most

cases the ring Zn is used, which by Section 5.1.2 and the notes from Section 5.2.3

seems not to be a good idea.

The System by Koyama, Maurer, Okamoto and Vanstone (KMOV)

This system, described in the 1991 paper [KMOV91], was the first cryptosystem

using elliptic curves over rings. The ring used is Zn, where n = pq is the product of

two distinct primes. In the paper the authors basically use the Chinese Remainder

Theorem (Proposition 2.5.6) to reduce to the case of elliptic curves over Zp and Zq.
Moreover, the authors use the usual addition formulae for fields over Zn, noting that

the chance that they fail is low enough to be ignored in practice: the authors argue

that otherwise computing with points would be a feasible factoring algorithm, which

they assume not to exist [KMOV91, p. 255]. The authors chose trace zero curves,

i. e. curves over Zp or Zq, which have exactly p+ 1 or q+ 1 points, respectively (the

trace of Frobenius is zero; compare Theorem 4.2.43 and see Section 5.2.2 why this

is not a good idea). More exactly the authors use
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• curves of the form E(0,0,0,0,b)/Zp, where p ≡ 2 (mod 3); and

• curves of the form E(0,0,0,a,0)/Zp, where p ≡ 3 (mod 4).

The group of points for the first type is cyclic, and the one for the second type is

either cyclic or Zm × Z2, depending on whether a is a quadratic residue modulo p

or not. For details see [KMOV91, p. 254, Lemma 1 and Lemma 2].

In the paper three schemes are described:

(a) [KMOV91, pp. 255f, Section 4] The first scheme is a simple generalization of the

RSA trapdoor function:

(1) One first chooses n and a curve Ec over Zn.

(2) Then one determines the order kp, kq of the group of points over Zp, Zq, and

takes k as the least common multiple of kp and kq.

(3) Next one chooses a (publicly known) encryption exponent e ∈ Z∗
k and the

corresponding (private) decryption exponent d = e−1 ∈ Z∗
k.

Then, if P ∈ Ec(Zn), we have d(eP ) = (de)P = P .

This system is only useful for signature schemes, since the knowledge of the

secret key is required to be able to generate a point on Ec(Zn). For this scheme,

curves of full generality are used, i. e. both a and b might be non-zero.

(b) [KMOV91, pp. 256f, Section 5] The second scheme uses curves with a definition

vector of the form (0, 0, 0, 0, b). This scheme works by using the fact that the

full information on the curve needed for adding two points is contained in the

points themselves, as b can be computed from a point (x, y) by using the fact

that y2 = x3 + b and, therefore, for every point of the affine plane A2(Zn) one

can choose a b such that the point lies on the curve E(0,0,0,0,b). Hence, one works

with a family of curves over Zn instead of with a fixed curve. Encryption and

decryption are done as in the first scheme.

Note that the affine plane A2(Zn) is the disjoint union of the sets E(0,0,0,0,b)(Zn)\
{∞}, where b ranges over Z∗

n.

(c) [KMOV91, pp. 257–260, Section 6] The third scheme works in the same way

as the second scheme, except that the encryption exponent is fixed to 2. For

decryption one reduces the problem using the secret key to two halving problems

over curves over a finite field. The drawback is that for one point P ∈ Ec(Zn)
there might be four points Qi ∈ Ec(Zn) satisfying 2Qi = P . The halving

algorithm is an adaption of an algorithm by Adleman, Manders and Miller for

computing square roots in Zp.

As input data, the algorithm is given p, Ec/Zp, |Ec(Zp)|, and a pointQ ∈ Ec(Zp),
which is known to be the double of another point in Ec(Zp).

(1) First one writes |Ec(Zp)| = 2hc with integers h and c such that c is odd.

(2) Next choose a random point T ∈ Ec(Zp) that is not a double point, i. e.

which cannot be written as T = 2T ′ for some T ′ ∈ Ec(Zp). Moreover, T

should be in the maximum cyclic subgroup of Ec(Zp), which contains Q.

(3) Define Y := Q and H := c+1
2 Q ∈ Ec(Zp).
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(4) Find the least k such that 2kcY = ∞.

(5) If k = 0, output H.

(6) Otherwise, define Y := Y − 2h−kT and H := H − 2h−k−1cT and go to

step (4).

To find a non-double point, Koyama et al. give two algorithms:

• Algorithm 1 for the case where Ec = E(0,0,0,a,b) over Zp, and Ec(Zp) is

cyclic:

Choose a random point T ∈ Ec(Zp). If
|Ec(Zp)|

2 T 6= ∞, output T . Other-

wise, restart.

• Algorithm 2 for the case where Ec = E(0,0,0,a,0), over Zp, and Ec(Zp) ∼=
Z2 × Z(p+1)/2:

This algorithm needs to compute the Weil pairing

en : Ec(Zp)[n] × Ec(Zp)[n] → Z∗
p,

where n := p+1
2 . See [MOV93] for a description of the pairing and for an

algorithm to efficiently compute it.

Choose a random point T ∈ Ec(Zp) such that en(T,Q) = 1. If p+1
4 T 6= ∞

output T . Otherwise, restart.

For the security of the second and the third schemes, the authors show the following

[KMOV91, p. 260f, Section 7]:

• Computing |Ec(Zn)| is computationally equivalent to factoring n [KMOV91,

p. 260, Theorem 8].

• Computing d from e (as in the first and second scheme) is computationally

equivalent to factoring n [KMOV91, p. 260, Theorem 9].

• Completely breaking the second scheme is computationally equivalent to fac-

toring n [KMOV91, p. 260, Theorem 10].

Koyama et al. moreover discuss several attack types:

(a) Homomorphism attacks [KMOV91, p. 261, Section 7.4]: note that the second

and third scheme have the property that if M1,M2 ∈ Ec(Zn) are two plaintexts,

and E : Ec(Zn) → Ec(Zn) is the encryption function, then E(M1) + E(M2) =

E(M1 +M2). The same holds for decryption. But for this we need that M1 and

M2 lie on the same curve Ec/Zp; if M1 and M2 lie on different curves, which is

the case with a high probability, then encryption and decryption do not have

this property.

It is still possible to exploit the homomorphism property (see [KMOV91] for

more details and how to avoid this).

(b) Isomorphism attacks [KMOV91, pp. 261f, Section 7.5]: an isomorphism is a

coordinate transformation and can be used by an attacker to make someone

sign a seemingly “random” message. By applying the isomorphism to the point,

one gets a signature for the plain text obtained from the original plaintext

after applying the isomorphism. This again can be avoided (for details see

[KMOV91]).
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(c) Low Multiplier Attack [KMOV91, p. 263, Section 7.6]: for the original RSA

system there have been attacks where small encryption exponents were used,

like e = 2 as in the third scheme above. Koyama et al. argue that the methods

used for RSA cannot be applied to this case.

The Meyer-Müller Cryptosystem

At the Eurocrypt’96 conference, B. Meyer and V. Müller [MM96] presented another

cryptosystem based on elliptic curves over Zn, based on the scheme by Koyama

et al. [KMOV91]. M. Joye and J.-J. Quisquater have shown in [JQ98] that the

Meyer-Müller system can be reduced to the Rabin-William cryptosystem.

We will describe how the system works. One chooses n to be the product of two

distinct primes that are congruent to 11 modulo 12. Meyer and Müller use the fact

that one can uniquely determine one of the possible four square roots of k ∈ Zn
by two bits, which store whether the square root is odd or even, and whether the

Jacobi symbol is 1 or −1. See [MM96, Section 3] for details.

To encrypt a message m ∈ Zn one randomly chooses a λ ∈ Zn \{0} and defines a

point P = (m2 : λm3 : 1) ∈ P2(Zn). Moreover, one defines a = λ3 and computes b =

(λ2 − 1)m6 − am2, and checks whether ∆(0,0,0,a,b) ∈ Z∗
n. If this is not the case, one

chooses another λ. Otherwise, one computes (x : y : 1) = 2P , and sends a, b, x, the

Jacobi symbol
( y
n

)
and whether y is odd or even.

For decryption one computes the square root y of x3 + ax+ b determined by the

Jacobi symbol and the odd/even bit. Then one computes all Pi = (xi : yi : 1) ∈
E(0,0,0,a,b) such that 2Pi = (x : y : 1). Next, compute all i such that a2 = y6

i x
−9
i

mod n. If there is more than one such i, this is a protocol failure. Otherwise m =

y3
i x

−4
i a−1 mod n.

If in encryption or decryption any operation fails, this is also a protocol failure.

Meyer and Müller note that the probability that there is more than one i and that one

cannot factor n at the same time is at most 1182/(n− 1) (see [MM96, Theorem 2]).

What is left is how to compute a P ∈ Ec(Zn) such that 2P = Q for a given Q ∈
Ec(Zn). If the factorization of n is known, one can reduce to P,Q ∈ Ec(Zp) for a

prime p [MM96, Section 5.2]. For this case Meyer and Müller provide an algorithm

(see [MM96, Algorithm 4]) that computes the roots of a polynomial of degree four

and tries whether there are y-coordinates for every root x such that 2(x : y : 1) = Q.

Moreover, Meyer and Müller show that factoring n and decrypting arbitrary

messages is randomly polynomial time equivalent (see [MM96, Theorem 6]).

This system has several disadvantages. Decryption is more complicated, as in

the system by Koyama et al. from above. Also, Joye and Quisquater pointed out

in [JQ98, Section 1] that if a message is sent twice to different receivers, one can

reconstruct the plaintext from the two ciphertexts.

Paillier Schemes

In his paper [Pai00] S. D. Paillier presents three cryptosystems based on elliptic

curves over rings. The first one is a variant of the encryption scheme of Naccache

and Stern and uses a curve over the ring Zn, with n = pq for two distinct primes

p and q. The second is an analogon to the Okamoto-Uchiyama encryption scheme

and uses curves over the ring Zp2q for two distinct primes p and q. The third is a
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variant of the Paillier cryptosystem and uses curves over the ring Zn2 , where n = pq

is the product of two distinct primes.

S. D. Galbraight shows that the third scheme in [Pai00] is not secure (see [Gal02,

Section 6]) and that the second one cannot be implemented securely (see [Gal02,

Section 7]). Then he presents another variation of the original Paillier cryptosystem

(see [Gal02, Section 9]). Note that Galbraight remarks that cryptosystems based on

elliptic curves over Zn for large n are practically irrelevant, since their performance

is much worse than those of non-elliptic curve schemes over Zn, for example RSA.

Extensions of Previous Schemes

Let n be the product of two distinct primes p and q. A cryptosystem is semantically

secure if, given two ciphertexts and one plaintext, it is impossible to determine which

ciphertext corresponds to the plaintext.

(a) In [GMMV02] a semantically secure RSA system based on elliptic curves over

Zn2 is presented. In this scheme only the x-coordinate of a point is stored, and

a curve of the type E(0,0,0,a,b)/Zn2 is used.

(b) In [GMMV03] a semantically secure extension of the KMOV scheme over Zn2 is

presented. As in the KMOV scheme, points are taken from a family of curves

of the form E(0,0,0,0,b)/Zn2 .

(c) In [GMTV04] a semantically secure scheme is presented that also works with a

family of curves of the form E(0,0,0,0,b)/Zn2 . This scheme uses ideas from both

Paillier schemes and Rabin related schemes.
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Bézout

equation, 52

theorem of, 83

bihomogenous, 149

branch point, 115

canonical

divisor, 109

sheaf, 109

Cartier divisor, 104

category, 5

chord and tangent law, 145

closed

immersion, 96

morphism, 98

point, 86

subscheme, 96

closure

projective, 76

topological, 86

cokernel

of a morphism of sheaves, 65

presheaf, 65

commutative group object, 129

complete

curve, 112

linear system, 121

dimension, 121

set of addition laws, 149

ComputePrimitiveCombination, 49

conductor, 166

connected scheme, 91

geometrically, 93

contravariant functor, 6

coordinate ring

affine, 78

homogenous, 78

coproduct, 6

covariant functor, 5

curve

as variety, 112

complete, 112

defined over F, 122

generalized smooth curve, 122

over algebraically closed field, 112

smooth, 112

defining vector of an elliptic curve, 174

degree

inseparable, of a morphism, 114

of a divisor, 117

of a projective variety, 83

of morphism of curves, 114

separable, of a morphism, 114

dense, 86

derivation, 37

deterministic algorithm, 7

differentials

module of relative, 37

224



INDEX

sheaf of relative, 108

digital signature, 210

dimension

of a projective variety, 79

of a topological space, 78

of a variety, 78

of an ideal, 35

direct

image

of a sheaf, 64

of an O-module, 70

limit lim−→, 63

product of sheaves, 62

sum of sheaves, 62

system, 63

disconnected, topologically, 91

discrete logarithm problem

(DLP), 210

discrete valuation ring, 21

discriminant of a Weierstraß

equation, 137

division

algorithm, 56

polynomials, 169

ring, 186

divisor

canonical, 109

class group, 104

Cartier, 104

complete linear system of, 121

defined over F, 123

degree, 117

effective, 103

effective Cartier, 106

prime, 103

relative effective Cartier, 106

Weil divisor, 103

dominant rational map, 82

dual O-module, 68

effective divisor, 103

Cartier, 106

relative Cartier, 106

elementary symmetric polynomial, 30

elliptic curve, 133

discrete logarithm problem

(ECDLP), 211

generalized, 133

endomorphism ring, 158

equivalence of categories, 6

exponential time bounded, 7

extended Euclidean algorithm, 52

exterior

algebra, 20

of O-modules, 68

power, 20

of O-modules, 68

faithful functor, 6

fibre, 95

fibred product, 92

final object, 129

finite

algebra, 97

morphism, 97

point, 137

type, morphism of, 97

locally, 97

flat

module of sheaves, 99

morphism, 17, 99

R-module, 17

free O-module, 68

Frobenius morphism, 27

full

functor, 6

subcategory, 6

function field

of a variety, 80

of an integral scheme, 102

functor, 5

fundamental discriminant, 166

Galois

closed, 30

extension, 30

group, 29

generalized

elliptic curve, 133

smooth curve, 122

generic

fibre, 95

point, 86

genus, 120

225



INDEX

arithmetic, 120

geometric, 109

geometric

fibre, 95

genus, 109

point, 87

geometrically

connected, 93

irreducible, 93

germ, 60

global section, 59

graded

module, 33

morphism, 31

ring, 31

group

object, 129

scheme, 131

height of an ideal, 35

Hilbert

basis theorem, 11

function, 35

Nullstellensatz, 74

polynomial, 35

of a projective algebraic set, 78

homogenous

coordinate ring, 78

element, 31

ideal, 32

homomorphism of group objects, 129

hyperplane, 75

hypersurface, 83

ideal sheaf, 69

locally principle, 96

of a closed subscheme, 96

idempotent, 9

image

of a morphism of sheaves, 65

presheaf, 65

immersion

closed, 96

open, 96

infinite point, 137

inhomogenous Weierstraß

equation, 137

initial ideal, 56

inseparable, 28

degree, 29, 114

morphism, 114

purely, 28

integral scheme, 91

intersection multiplicity, 83

invariant differential

of a Weierstraß equation, 160

inverse image

of a sheaf, 64

of an O-module, 70

invertible sheaf, 68

irreducible, 74

closed subsets of SpecR, 91

component, 77

scheme, 91

geometrically, 93

irrelevant ideal, 32

isogeny, 158

degree, 158

isomorphism, 5

of (pre-)sheaves, 60

of functors, 6

j-invariant, 137, 142

Jacobi symbol, 166

Jacobian matrix, 82

Kähler differentials, module of, 37

kernel

of a morphism of sheaves, 65

presheaf, 65

key exchange, 210

KMOV, 209, 213

Kronecker class number H(∆), 166

Krull dimension, 35

leading

coefficient, 56

monomial, 56

term, 56

length of module, 25

line, 75

linearly equivalent

Cartier divisors, 104

Weil divisors, 104

local

226



INDEX

morphism, 85

parameter, 115

ring, 21

regular, 36

localization, 22

locally

generated OX -module, 99

Noetherian, 91

of finite presentation, morphism, 97

of finite type, morhpism, 97

principle ideal sheaf, 96

ringed space, 85

Meyer-Müller, 216

module

graded, 33

of relative differential forms, 37

projective, 41

monomial order, 56

morphism

closed, 98

finite, 97

flat, 99

locally

of finite presentation, 97

of finite type, 97

of (pre-)sheaves, 60

of finite presentation, 97

at x, 97

of finite type, 97

of graded

modules, 33

rings, 31

of locally ringed spaces, 85

of O-modules, 67

of relative dimension, 100

of ringed spaces, 66

of schemes, 86

over schemes, 87

projective, 98

proper, 98

quasi-compact, 96

quasi-projective, 98

separated, 96

smooth, 100

of relative dimension, 109

universally closed, 98

multi degree, 56

multiple root, 13

multiplicative subset, 15

multiplicity, 83

n-torsion points, 162

natural transformation, 6

Newton-Hensel, 12

nilideal, 11

nilpotence index, 10

of an ideal, 11

nilpotent, 10

ideal, 11

Noetherian

module, 25

ring, 10

scheme, 91

locally, 91

topological space, 77

non-zero-divisor, 38

normal, 28

Nullstellensatz, 74

numerical polynomial, 35

of finite presentation

algebra, 21

morphism of schemes, 97

projective R-module, 43

one-way trapdoor function, 209

open

immersion, 96

subscheme, 96

opposite category, 6, 129

Paillier schemes, 216

perfect field, 27

Picard group

of a ring, 44

of a ringed space, 69

point, 66

at infinity, 137

finite, 137

geometric, 87

infinite, 137

S-rational, 87

points, 71

pole of a rational map, 104

polynomial time

227



INDEX

bounded, 7

equivalent, 7

positive definite quadratic form, 162

binary, 166

preordered index set, 63

presheaf, 59

prime divisor, 103

primitive, 39

polynomial, 40

principal

Cartier divisor, 104

Weil divisor, 104

probabilistic algorithm, 7

product, 6

projective

closure, 76

morphism, 98

n-space

Pn(R), 71

scheme-theoretic, PnR, 89

Nullstellensatz, 74

R-module, 41

of finite presentation, 43

spectrum Proj, 88

variety, 75

degree, 83

proper morphism, 98

public key cryptography, 210

purely inseparable, 28

morphism, 114

quadratic form, 162

positive definite binary, 166

quasi-affine variety, 79

quasi-coherent, 88

quasi-compact morphism, 96

quasi-projective

morphism, 98

variety, 79

quasi-separated, 96

quotient (pre)sheaf, 62

radical

ideal, 15

of a ring, 10

of an ideal, 15

ramification index, 115

ramified, 115

randomized algorithm, 7

randomly polynomial time

equivalent, 7

rank of an O-module, 68

rational

map, 82

point, 87

F-rational points, 122

reduced

ring, 10

scheme, 91

regular

ring, 36

scheme, 91

regular function

on affine variety, 79

on projective variety, 79

relative

dimension, 100

effective Cartier divisor, 106

representable functor, 129

residue field, 94

restriction, 59

resultant, 14

Riemann-Roch, theorem of, 121

ring

graded, 31

local, 21

regular, 36

regular, 36

ringed space, 66

RSA one-way trapdoor function, 211

scheme, 86

over a scheme, 87

section, 59

over a scheme, 87

separable, 28

degree, 29, 114

morphism, 114

separated morphism, 96

Shanks-Mestre, 171

sheaf, 60

associated

to a Cartier divisor, 105

to a graded module, 89

228



INDEX

to a module, 88

to a presheaf, 61

Hom, 68

invertible, 68

of modules, 60

quasi-coherent, 88

of relative differentials, 108

of total quotient rings, 103

sheafification of a presheaf, 61

simple

module, 25

ring, 186

root, 13

smooth, 82

curve, 112

generalized, 122

integer, 192

morphism, 100

of relative dimension, 109

snake lemma, 18

spectrum

projective Proj, 88

SpecR, 84

stalk, 60

structure

morphism, 87

sheaf

of ProjS, 89

of SpecR, 85

theorem

for Artinian rings, 25

for fin. gen. Abelian groups, 9

sub-O-module, 67

subcategory, 6

subpresheaf, 61

subscheme

closed, 96

open, 96

subsheaf, 61

supersingular, 165

Sylvester matrix, 14

tangent

hyperplane, 120

line, 120

sheaf, 109

tensor

algebra, 20

of O-modules, 68

product

of O-modules, 67

of R-modules, 16

torsion subgroup, 162

transcendence

basis, 36

degree, 36

twist

of a S-module, 33

of an OX -module, 90

unit, 9

universally closed morphism, 98

unramified, 115

valuation, 21, 104

ring, 21

vanishing set, 73

variety, 75

degree of a projective variety, 83

over algebraically closed field, 79

quasi-affine, 79

quasi-projective, 79

Wedderburn, 186

Weierstraß equation, 137

Weil divisor, 103

Yoneda’s Lemma, 130

Zariski topology, 73, 85, 89

zero isogeny, 158

zero of a rational map, 104

zero-dimensional ideal, 57

zero-divisor, 38

229



Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen
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